論文の概要: A Comprehensive Survey on Data Augmentation
- arxiv url: http://arxiv.org/abs/2405.09591v2
- Date: Fri, 17 May 2024 07:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 11:46:25.059390
- Title: A Comprehensive Survey on Data Augmentation
- Title(参考訳): データ拡張に関する包括的調査
- Authors: Zaitian Wang, Pengfei Wang, Kunpeng Liu, Pengyang Wang, Yanjie Fu, Chang-Tien Lu, Charu C. Aggarwal, Jian Pei, Yuanchun Zhou,
- Abstract要約: データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する技術である。
既存の文献調査では、特定のモダリティデータにのみ焦点が当てられている。
本稿では,異なる共通データモダリティのためのデータ拡張技術を含む,より啓蒙的な分類法を提案する。
- 参考スコア(独自算出の注目度): 55.355273602421384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is a series of techniques that generate high-quality artificial data by manipulating existing data samples. By leveraging data augmentation techniques, AI models can achieve significantly improved applicability in tasks involving scarce or imbalanced datasets, thereby substantially enhancing AI models' generalization capabilities. Existing literature surveys only focus on a certain type of specific modality data, and categorize these methods from modality-specific and operation-centric perspectives, which lacks a consistent summary of data augmentation methods across multiple modalities and limits the comprehension of how existing data samples serve the data augmentation process. To bridge this gap, we propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities. Specifically, from a data-centric perspective, this survey proposes a modality-independent taxonomy by investigating how to take advantage of the intrinsic relationship between data samples, including single-wise, pair-wise, and population-wise sample data augmentation methods. Additionally, we categorize data augmentation methods across five data modalities through a unified inductive approach.
- Abstract(参考訳): データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する一連のテクニックである。
データ拡張技術を活用することで、AIモデルは、不足したデータセットや不均衡なデータセットを含むタスクにおける適用性を大幅に向上し、AIモデルの一般化能力を大幅に向上させることができる。
既存の文献調査では、特定のモダリティデータにのみ焦点をあて、これらの手法を、複数のモダリティにまたがるデータ拡張方法の一貫した要約を欠き、既存のデータサンプルがデータ拡張プロセスをどのように提供するかの理解を制限している、モダリティ特異的およびオペレーション中心の視点から分類している。
このギャップを埋めるために、異なる共通データモダリティのためのデータ拡張技術を含む、より啓蒙的な分類法を提案する。
具体的には、データ中心の観点から、単一、ペアワイド、集団ワイドのサンプルデータ拡張手法を含むデータサンプル間の本質的な関係をいかに活用するかを検討することで、モダリティ非依存型分類法を提案する。
さらに、5つのデータモダリティにまたがるデータ拡張手法を統一的帰納的手法により分類する。
関連論文リスト
- A Survey on Data Synthesis and Augmentation for Large Language Models [35.59526251210408]
本稿では,大規模言語モデルのライフサイクルを通じてデータ生成手法をレビューし,要約する。
これらの手法が直面する現在の制約について考察し,今後の開発・研究の道筋について考察する。
論文 参考訳(メタデータ) (2024-10-16T16:12:39Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - A Survey on Data Augmentation in Large Model Era [16.05117556207015]
大きな言語と拡散モデルを含む大きなモデルは、人間レベルの知能を近似する上で非常に有望である。
これらのモデルへの継続的な更新により、既存の高品質なデータの貯水池はすぐに枯渇する可能性がある。
本稿では,大規模モデル駆動型データ拡張手法について概観する。
論文 参考訳(メタデータ) (2024-01-27T14:19:33Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
本稿では,データ拡張と説明のためのデファクトデータの自動生成手法を提案する。
いくつかの異なるデータセットに対する包括的な評価と、さまざまな最先端ベンチマークの使用により、我々のアプローチがモデルパフォーマンスを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-06-29T10:27:01Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
本稿では、入力データの分布を近似し、この分布から新しいデータをサンプリングする新しい自動データ拡張モデルを提案する。
以上の結果から,拡張戦略は訓練が高速であり,ニューラルネットワークと最先端手法の両方の分類精度を向上させることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-05-27T11:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。