Graph Neural Network for spatiotemporal data: methods and applications
- URL: http://arxiv.org/abs/2306.00012v1
- Date: Tue, 30 May 2023 02:27:17 GMT
- Title: Graph Neural Network for spatiotemporal data: methods and applications
- Authors: Yun Li, Dazhou Yu, Zhenke Liu, Minxing Zhang, Xiaoyun Gong, Liang Zhao
- Abstract summary: Graph neural networks (GNNs) have emerged as a powerful tool for understanding data with dependencies to each other.
This article aims to provide an overview of the technologies and applications of GNNs in thetemporal domain.
- Score: 7.612070518526342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data, there has been a surge in the availability of data
containing rich spatial and temporal information, offering valuable insights
into dynamic systems and processes for applications such as weather
forecasting, natural disaster management, intelligent transport systems, and
precision agriculture. Graph neural networks (GNNs) have emerged as a powerful
tool for modeling and understanding data with dependencies to each other such
as spatial and temporal dependencies. There is a large amount of existing work
that focuses on addressing the complex spatial and temporal dependencies in
spatiotemporal data using GNNs. However, the strong interdisciplinary nature of
spatiotemporal data has created numerous GNNs variants specifically designed
for distinct application domains. Although the techniques are generally
applicable across various domains, cross-referencing these methods remains
essential yet challenging due to the absence of a comprehensive literature
review on GNNs for spatiotemporal data. This article aims to provide a
systematic and comprehensive overview of the technologies and applications of
GNNs in the spatiotemporal domain. First, the ways of constructing graphs from
spatiotemporal data are summarized to help domain experts understand how to
generate graphs from various types of spatiotemporal data. Then, a systematic
categorization and summary of existing spatiotemporal GNNs are presented to
enable domain experts to identify suitable techniques and to support model
developers in advancing their research. Moreover, a comprehensive overview of
significant applications in the spatiotemporal domain is offered to introduce a
broader range of applications to model developers and domain experts, assisting
them in exploring potential research topics and enhancing the impact of their
work. Finally, open challenges and future directions are discussed.
Related papers
- A Systematic Literature Review of Spatio-Temporal Graph Neural Network Models for Time Series Forecasting and Classification [7.58512888676767]
This review provides a comprehensive overview of approaches and application domains various GNNs for time series classification and forecasting.
A database search was conducted, and over 150 journal papers were selected for a detailed examination of the current state-of-the-art in the field.
arXiv Detail & Related papers (2024-10-29T08:05:10Z) - Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - A Survey of Generative Techniques for Spatial-Temporal Data Mining [93.55501980723974]
This paper focuses on the integration of generative techniques into spatial-temporal data mining.
The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods.
It also introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline.
arXiv Detail & Related papers (2024-05-15T12:07:43Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection [98.41798478488101]
Time series analytics is crucial to unlocking the wealth of information implicit in available data.
Recent advancements in graph neural networks (GNNs) have led to a surge in GNN-based approaches for time series analysis.
This survey brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
arXiv Detail & Related papers (2023-07-07T08:05:03Z) - Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities [15.51428011794213]
Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static) graph-structured data.
Recent years, GNN-based models for temporal graphs have emerged as a promising area of research to extend the capabilities of GNNs.
We provide the first comprehensive overview of the current state-of-the-art of temporal GNN, introducing a rigorous formalization of learning settings and tasks.
We conclude the survey with a discussion of the most relevant open challenges for the field, from both research and application perspectives.
arXiv Detail & Related papers (2023-02-02T11:12:51Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning [14.353798949041698]
We propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning.
The core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs.
To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module.
arXiv Detail & Related papers (2022-06-07T16:12:17Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.