論文の概要: Simplicity within biological complexity
- arxiv url: http://arxiv.org/abs/2405.09595v1
- Date: Wed, 15 May 2024 13:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 16:09:33.700844
- Title: Simplicity within biological complexity
- Title(参考訳): 生物学的複雑性における単純さ
- Authors: Natasa Przulj, Noel Malod-Dognin,
- Abstract要約: 文献を調査し、マルチスケール分子ネットワークデータの埋め込みのための包括的フレームワークの開発について論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
本稿では,モデルから効率的かつスケーラブルなソフトウェア実装に至るまで,マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Heterogeneous, interconnected, systems-level, molecular data have become increasingly available and key in precision medicine. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, repurpose known and discover new drugs to personalize medical treatment. Existing methodologies are limited and a paradigm shift is needed to achieve quantitative and qualitative breakthroughs. In this perspective paper, we survey the literature and argue for the development of a comprehensive, general framework for embedding of multi-scale molecular network data that would enable their explainable exploitation in precision medicine in linear time. Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships. They have recently achieved unprecedented performance on hard problems of utilizing few omic data in various biomedical applications. However, research thus far has been limited to special variants of the problems and data, with the performance depending on the underlying topology-function network biology hypotheses, the biomedical applications and evaluation metrics. The availability of multi-omic data, modern graph embedding paradigms and compute power call for a creation and training of efficient, explainable and controllable models, having no potentially dangerous, unexpected behaviour, that make a qualitative breakthrough. We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation, and to apply it to biomedical informatics. It will lead to a paradigm shift in computational and biomedical understanding of data and diseases that will open up ways to solving some of the major bottlenecks in precision medicine and other domains.
- Abstract(参考訳): 不均一で相互接続されたシステムレベルの分子データが、精度医学においてますます利用され、鍵となっている。
患者をリスクグループに分類し、新しいバイオマーカーや標的を発見し、既知の薬物を再利用し、治療をパーソナライズするための新薬を見つける必要がある。
既存の方法論は限られており、定量的かつ質的なブレークスルーを達成するためにはパラダイムシフトが必要である。
本稿では, 文献を調査し, 多スケール分子ネットワークデータへの包括的包括的包括的包括的包括的包括的枠組みの構築を論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
彼らは最近、様々なバイオメディカル応用において、わずかなオミックデータを利用するという難題において、前例のないパフォーマンスを成し遂げた。
しかし、これまでの研究は問題やデータの特別な変種に限られており、基礎となるトポロジ-ファンクショナルネットワーク生物学の仮説、バイオメディカル応用、評価指標に依存する。
マルチオミックデータ、現代的なグラフ埋め込みパラダイム、計算パワーは、質的なブレークスルーをもたらす潜在的に危険で予期しない振る舞いを持たない、効率的で説明可能な、制御可能なモデルの作成と訓練を要求する。
本稿では、モデルから効率的でスケーラブルなソフトウェア実装に至るまで、マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発し、それをバイオメディカルインフォマティクスに適用することを提案する。
データや病気の計算的、生医学的理解のパラダイムシフトがもたらされ、精度医学やその他の領域における主要なボトルネックを解決する方法が開かれていくだろう。
関連論文リスト
- Optimal Transport for Latent Integration with An Application to Heterogeneous Neuronal Activity Data [1.5311478638611091]
本稿では,複雑な生物学的プロセスにおいて共有パターンを抽出する最適なトランスポートに基づく,新しい異種データ統合フレームワークを提案する。
本手法は,少数の被験者でも有効であり,アライメントに補助的なマッチング情報を必要としない。
論文 参考訳(メタデータ) (2024-06-27T04:29:21Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
グラフ機械学習(GML)は、グラフ構造化バイオメディカルデータをモデル化する優れた能力で注目されている。
近年の研究では、より正確で解釈可能な薬物発見を実現するために、外部のバイオメディカル知識をGMLパイプラインに統合することを提案した。
論文 参考訳(メタデータ) (2023-02-16T12:38:01Z) - Quantum network medicine: rethinking medicine with network science and
quantum algorithms [0.0]
量子コンピューティングは、ネットワーク医療の可能性を最大限に活用するための重要な要素となるかもしれない。
本稿では,新しい研究分野である量子ネットワーク医学において,ネットワーク医学と量子アルゴリズムを組み合わせることを提案する。
論文 参考訳(メタデータ) (2022-06-22T09:05:24Z) - Network Module Detection from Multi-Modal Node Features with a Greedy
Decision Forest for Actionable Explainable AI [0.0]
本研究では,Greedy Decision Forest を用いたマルチモーダルノード特徴に基づくサブネットワーク検出について述べる。
私たちのガラスボックスアプローチは、がんなどの疾患をよりよく理解するために、マルチオミクスデータから病気を引き起こすネットワークモジュールを明らかにするのに役立ちます。
論文 参考訳(メタデータ) (2021-08-26T09:42:44Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。