論文の概要: How quantum computing can enhance biomarker discovery for multi-factorial diseases
- arxiv url: http://arxiv.org/abs/2411.10511v1
- Date: Fri, 15 Nov 2024 16:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:03.321548
- Title: How quantum computing can enhance biomarker discovery for multi-factorial diseases
- Title(参考訳): 量子コンピューティングが多要素疾患のバイオマーカー発見をいかに促進するか
- Authors: Frederik F. Flöther, Daniel Blankenberg, Maria Demidik, Karl Jansen, Rajiv Krishnakumar, Nouamane Laanait, Laxmi Parida, Carl Saab, Filippo Utro,
- Abstract要約: 量子アルゴリズムは、特に機械学習において、バイオマーカー発見における重要な応用にマップされる。
アルゴリズムとアプリケーションに関連する機会と課題について論じる。
オープンな研究課題に関する見通しが提示されている。
- 参考スコア(独自算出の注目度): 0.14511217610551727
- License:
- Abstract: Biomarkers play a central role in medicine's gradual progress towards proactive, personalized precision diagnostics and interventions. However, finding biomarkers that provide very early indicators of a change in health status, particularly for multi-factorial diseases, has been challenging. Discovery of such biomarkers stands to benefit significantly from advanced information processing and means to detect complex correlations, which quantum computing offers. In this perspective paper, quantum algorithms, particularly in machine learning, are mapped to key applications in biomarker discovery. The opportunities and challenges associated with the algorithms and applications are discussed. The analysis is structured according to different data types - multi-dimensional, time series, and erroneous data - and covers key data modalities in healthcare - electronic health records (EHRs), omics, and medical images. An outlook is provided concerning open research challenges.
- Abstract(参考訳): バイオマーカーは、予防的かつパーソナライズされた精密診断と介入に向けた医学の段階的な進歩において中心的な役割を果たす。
しかし、特に多因子性疾患において、健康状態の変化を示す非常に初期の指標となるバイオマーカーを見つけることは困難である。
このようなバイオマーカーの発見は、高度な情報処理から大きな恩恵を受け、量子コンピューティングが提供する複雑な相関を検出する手段である。
この観点から、特に機械学習における量子アルゴリズムは、バイオマーカー発見における重要な応用にマップされる。
アルゴリズムとアプリケーションに関連する機会と課題について論じる。
分析は、多次元、時系列、誤ったデータなど、さまざまなデータタイプに基づいて構成され、医療における重要なデータモダリティ、電子健康記録(EHR)、オミクス、医療画像をカバーする。
オープンな研究課題に関する見通しが提示されている。
関連論文リスト
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
マルチ多重イメージングは、複数のバイオマーカーを1つのセクションで同時に視覚化することを可能にする。
多重画像からのデータは、前処理、セグメンテーション、特徴抽出、空間解析のための洗練された計算方法を必要とする。
PathMLは、画像分析を効率化するAIベースのプラットフォームで、臨床および研究環境では複雑な解釈がアクセス可能である。
論文 参考訳(メタデータ) (2024-11-01T18:02:41Z) - Multi-Omic and Quantum Machine Learning Integration for Lung Subtypes Classification [0.0]
量子コンピューティングと機械学習の融合は、マルチオミクスデータセット内の複雑なパターンを解き放つことを約束している。
我々は,バイオマーカー発見の可能性を秘めたLUADデータセットとLUSCデータセットの最適な識別方法を開発した。
論文 参考訳(メタデータ) (2024-10-02T23:16:31Z) - Simplicity within biological complexity [0.0]
文献を調査し、マルチスケール分子ネットワークデータの埋め込みのための包括的フレームワークの開発について論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
本稿では,モデルから効率的かつスケーラブルなソフトウェア実装に至るまで,マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発することを提案する。
論文 参考訳(メタデータ) (2024-05-15T13:32:45Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
バイオメディカルな知識とデータの融合を取り入れた最先端の機械学習研究について概説する。
機械学習パイプラインにおける知識表現の多様な形態と知識統合の現在の戦略について概説する。
論文 参考訳(メタデータ) (2024-01-12T07:01:36Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
低次元の埋め込み空間は、健康指標、ライフスタイル、および人口動態の予測をデータスカース化するために、英国バイオバンクの人口データセットから導出することができる。
半超越的アプローチによるパフォーマンス向上は、おそらく様々な医学データサイエンス応用にとって重要な要素となるだろう。
論文 参考訳(メタデータ) (2021-10-12T16:25:50Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
グラフニューラルネットワーク(GNN)は、コンピュータビジョン、コンピュータ支援診断、および関連分野におけるいくつかの問題に取り組む際に、前例のない増殖を目撃している。
これまでの研究では、モデルの精度の向上に焦点が当てられていたが、GNNによって特定される最も差別的な特徴を定量化することは、臨床応用における信頼性に関する懸念を生じさせる無傷の問題である。
異なるモデル間で共有される最も差別的な特徴(バイオマーカー)によるGNNアセスメントのためのフレームワークを初めて提案する。我々のフレームワークの健全性を確認するため、トレーニング戦略やトレーニング戦略などのさまざまな要因を取り入れている。
論文 参考訳(メタデータ) (2021-09-06T05:31:02Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。