論文の概要: Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach
- arxiv url: http://arxiv.org/abs/2405.09657v1
- Date: Wed, 15 May 2024 18:48:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:59:48.696191
- Title: Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach
- Title(参考訳): 継続的統合スキップの検出 : 強化学習に基づくアプローチ
- Authors: Hajer Mhalla, Mohamed Aymen Saied,
- Abstract要約: 継続的統合(CI)プラクティスは、自動ビルドとテストプロセスを採用することで、コード変更のシームレスな統合を促進する。
Travis CIやGitHub Actionsといった一部のフレームワークは、CIプロセスの簡素化と強化に大きく貢献している。
開発者はCI実行に適したコミットやスキップの候補としてコミットを正確にフラグ付けすることの難しさに悩まされ続けている。
- 参考スコア(独自算出の注目度): 0.4297070083645049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The software industry is experiencing a surge in the adoption of Continuous Integration (CI) practices, both in commercial and open-source environments. CI practices facilitate the seamless integration of code changes by employing automated building and testing processes. Some frameworks, such as Travis CI and GitHub Actions have significantly contributed to simplifying and enhancing the CI process, rendering it more accessible and efficient for development teams. Despite the availability these CI tools , developers continue to encounter difficulties in accurately flagging commits as either suitable for CI execution or as candidates for skipping especially for large projects with many dependencies. Inaccurate flagging of commits can lead to resource-intensive test and build processes, as even minor commits may inadvertently trigger the Continuous Integration process. The problem of detecting CI-skip commits, can be modeled as binary classification task where we decide to either build a commit or to skip it. This study proposes a novel solution that leverages Deep Reinforcement Learning techniques to construct an optimal Decision Tree classifier that addresses the imbalanced nature of the data. We evaluate our solution by running a within and a cross project validation benchmark on diverse range of Open-Source projects hosted on GitHub which showcased superior results when compared with existing state-of-the-art methods.
- Abstract(参考訳): ソフトウェア産業は、商用環境とオープンソース環境の両方において、継続的インテグレーション(CI)プラクティスの採用が急増している。
CIプラクティスは、自動ビルドとテストプロセスを採用することで、コード変更のシームレスな統合を促進する。
Travis CIやGitHub Actionsといった一部のフレームワークは、CIプロセスの簡素化と拡張に大きく貢献し、開発チームにとってよりアクセスしやすく、効率的になった。
これらのCIツールが利用可能であるにも関わらず、CI実行に適したコミットを正確にフラグ付けすることや、特に多くの依存関係を持つ大規模プロジェクトでスキップする候補として、開発者は引き続き困難に直面している。
コミットの不正確なフラグ付けは、リソース集約的なテストとビルドプロセスにつながる可能性がある。
CI-skipコミットを検出する問題は、コミットをビルドするか、スキップするかを決めるバイナリ分類タスクとしてモデル化できる。
本研究では,Deep Reinforcement Learning(深層強化学習)技術を利用して,データの不均衡性に対処する最適な決定木分類器を構築することを提案する。
私たちは、GitHubにホストされているさまざまなオープンソースプロジェクトに対して、社内およびクロスプロジェクト検証ベンチマークを実行して、ソリューションを評価しました。
関連論文リスト
- Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
非教師なし環境設計(UED)手法は、エージェントがイン・オブ・アウト・ディストリビューションタスクに対して堅牢になることを約束する適応的カリキュラムとして近年注目を集めている。
本研究は,既存のUEDメソッドがいかにトレーニング環境を選択するかを検討する。
本研究では,学習性の高いシナリオを直接訓練する手法を開発した。
論文 参考訳(メタデータ) (2024-08-27T14:31:54Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
リポジトリレベルのコード生成を評価するために設計された新しいベンチマークである textbfmethodnamews を提案する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - How to Understand Whole Software Repository? [64.19431011897515]
リポジトリ全体に対する優れた理解は、自動ソフトウェアエンジニアリング(ASE)への重要な道になるでしょう。
本研究では,リポジトリ全体を包括的に理解するためのエージェントによるRepoUnderstanderという新しい手法を開発した。
リポジトリレベルの知識をより活用するために、エージェントをまとめ、分析し、計画する。
論文 参考訳(メタデータ) (2024-06-03T15:20:06Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
プログラムの改善を自律的に達成するために、GitHubの問題を解決する自動化アプローチを提案する。
AutoCodeRoverと呼ばれるアプローチでは、LLMは洗練されたコード検索機能と組み合わせられ、最終的にプログラムの変更やパッチにつながります。
SWE-bench-lite(300の現実のGitHubイシュー)の実験では、GitHubの問題を解決する効果が向上している(SWE-bench-liteでは19%)。
論文 参考訳(メタデータ) (2024-04-08T11:55:09Z) - Enhancing LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis [8.31978033489419]
難解な分岐に到達可能なテストを生成する新しい技術である TELPA を提案する。
27のオープンソースPythonプロジェクトに対する実験結果から,TELPAは最先端のSBSTやLLMベースの技術よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-04-07T14:08:28Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - Toward Automatically Completing GitHub Workflows [16.302521048148748]
GH-WCOM(GitHub COMpletion)は、開発者が特定のCI/CDパイプライン、すなわちGitHubを書くのをサポートするトランスフォーマーベースのアプローチである。
我々の実証研究は、GH-WCOMが34.23%の正確な予測を提供することを示している。
論文 参考訳(メタデータ) (2023-08-31T14:53:00Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - A Brief Survey of Current Software Engineering Practices in Continuous
Integration and Automated Accessibility Testing [0.0]
本稿では,継続的統合によるアクセシビリティ向上に費やされたソフトウェアエンジニアリングの現在の状況について考察する。
また、アクセシビリティテストの実装方法について、アジャイルチームがメンバを訓練するために必要なステップについても検討しています。
論文 参考訳(メタデータ) (2021-02-27T01:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。