論文の概要: Enhancing Saliency Prediction in Monitoring Tasks: The Role of Visual Highlights
- arxiv url: http://arxiv.org/abs/2405.09695v1
- Date: Wed, 15 May 2024 20:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:50:04.624609
- Title: Enhancing Saliency Prediction in Monitoring Tasks: The Role of Visual Highlights
- Title(参考訳): モニタリングタスクにおける塩分濃度予測の強化:視覚的ハイライトの役割
- Authors: Zekun Wu, Anna Maria Feit,
- Abstract要約: 我々は、ハイライト条件における視覚的注意の変化を推測する新しいサリエンシモデルを開発した。
本研究は,視覚的ハイライトがユーザの注意力を高める効果を示し,これらの手がかりを有能性予測モデルに組み込むことの可能性を示した。
- 参考スコア(独自算出の注目度): 4.0361765428523135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines the role of visual highlights in guiding user attention in drone monitoring tasks, employing a simulated interface for observation. The experiment results show that such highlights can significantly expedite the visual attention on the corresponding area. Based on this observation, we leverage both the temporal and spatial information in the highlight to develop a new saliency model: the highlight-informed saliency model (HISM), to infer the visual attention change in the highlight condition. Our findings show the effectiveness of visual highlights in enhancing user attention and demonstrate the potential of incorporating these cues into saliency prediction models.
- Abstract(参考訳): 本研究では,ドローン監視作業におけるユーザの注意を誘導する上での視覚的ハイライトの役割を,シミュレートされたインタフェースを用いて検討した。
実験の結果,これらのハイライトは,対応する領域に対する視覚的注意を著しく向上させることができることがわかった。
本研究は,ハイライト中の時間的情報と空間的情報の両方を活用して,ハイライト状態における視覚的注意の変化を推定するために,ハイライトインフォームド・サリエンシ・モデル (HISM) を開発した。
本研究は,視覚的ハイライトがユーザの注意力を高める効果を示し,これらの手がかりを有能性予測モデルに組み込むことの可能性を示した。
関連論文リスト
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Shifting Focus with HCEye: Exploring the Dynamics of Visual Highlighting and Cognitive Load on User Attention and Saliency Prediction [3.2873782624127834]
本稿では,視覚強調(永続的・動的)と両タスクによる認知負荷が視線行動に及ぼす影響について検討する。
認知負荷の異なる場合、最先端のサリエンシモデルにより、その性能が向上することを示す。
論文 参考訳(メタデータ) (2024-04-22T14:45:30Z) - Semantic-Based Active Perception for Humanoid Visual Tasks with Foveal Sensors [49.99728312519117]
この研究の目的は、最近の意味に基づくアクティブな知覚モデルが、人間が定期的に行う視覚的なタスクをいかに正確に達成できるかを確立することである。
このモデルは、現在のオブジェクト検出器が多数のオブジェクトクラスをローカライズし、分類し、複数の固定にまたがるシーンのセマンティック記述を更新する能力を利用する。
シーン探索の課題では、セマンティック・ベースの手法は従来のサリエンシ・ベース・モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-16T18:15:57Z) - Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition [1.4374467687356276]
本稿では,MAE-Face self-supervised learning (SSL) 法と多視点融合注意機構を組み合わせた表現分類手法を提案する。
我々は、重要な顔の特徴を強調表示して、そのような機能がモデルのガイドとして機能するかどうかを判断することを目的とした、実装が容易でトレーニングなしのフレームワークを提案する。
Aff-wild2データセットにおけるモデル性能の改善により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-19T16:21:47Z) - GazeFusion: Saliency-guided Image Generation [50.37783903347613]
拡散モデルは、テキストプロンプトだけを前提として、前例のない画像生成機能を提供する。
本稿では,人間の視覚的注意の先行するデータを生成プロセスに組み込むためのサリエンシ誘導フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-16T21:01:35Z) - Top-Down Visual Attention from Analysis by Synthesis [87.47527557366593]
我々は、古典的分析・合成(AbS)の視覚的視点からトップダウンの注意を考察する。
本稿では,AbSを変動的に近似したトップダウン変調ViTモデルであるAbSViT(Analytic-by-Synthesis Vision Transformer)を提案する。
論文 参考訳(メタデータ) (2023-03-23T05:17:05Z) - GAMR: A Guided Attention Model for (visual) Reasoning [7.919213739992465]
人間は、複雑な視覚シーンを柔軟に解析し理解する能力において、現代のAIシステムよりも優れています。
視覚的推論のための新しいモジュール,(視覚的)推論のためのガイド付き注意モデル(GAMR)を提案する。
GAMRは、タスク関連視覚情報をメモリに選択してルーティングするために、注意シフトのシーケンスを通じて、脳が複雑な視覚的推論問題を動的に解くことを示唆している。
論文 参考訳(メタデータ) (2022-06-10T07:52:06Z) - Attention Mechanisms in Computer Vision: A Survey [75.6074182122423]
本稿では,コンピュータビジョンにおける様々な注意機構について概観する。
チャネルアテンション,空間アテンション,時間アテンション,分岐アテンションなど,アプローチによって分類する。
我々は注意機構研究の今後の方向性を提案する。
論文 参考訳(メタデータ) (2021-11-15T09:18:40Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z) - Visual Interest Prediction with Attentive Multi-Task Transfer Learning [6.177155931162925]
本稿では,デジタル写真における視覚的興味と感情の次元を予測するために,トランスファー学習とアテンション機構に基づくニューラルネットワークモデルを提案する。
ベンチマークデータセット上での本モデルの評価は,現在の最先端システムよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-05-26T14:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。