論文の概要: From NeRFs to Gaussian Splats, and Back
- arxiv url: http://arxiv.org/abs/2405.09717v1
- Date: Wed, 15 May 2024 22:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:50:04.600878
- Title: From NeRFs to Gaussian Splats, and Back
- Title(参考訳): NeRFからガウスプレートへ, そしてバックへ
- Authors: Siming He, Zach Osman, Pratik Chaudhari,
- Abstract要約: 限られた数の(典型的には自我中心の)ビューが存在するロボティクスアプリケーションの場合、ニューラル放射場(NeRF)のようなパラメトリックな表現はガウススプラッティング(GS)のような非パラメトリックなものよりも一般化される。
我々はこの2つを前後に変換する手順を開発する。
提案手法は,NRF (PSNR, SSIM, LPIPS) とGS (リアルタイムレンダリング, 表現の修正能力) の双方の利点を生かし, これらの変換の計算コストは, スクラッチからトレーニングするよりも小さかった。
- 参考スコア(独自算出の注目度): 18.816378259778013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For robotics applications where there is a limited number of (typically ego-centric) views, parametric representations such as neural radiance fields (NeRFs) generalize better than non-parametric ones such as Gaussian splatting (GS) to views that are very different from those in the training data; GS however can render much faster than NeRFs. We develop a procedure to convert back and forth between the two. Our approach achieves the best of both NeRFs (superior PSNR, SSIM, and LPIPS on dissimilar views, and a compact representation) and GS (real-time rendering and ability for easily modifying the representation); the computational cost of these conversions is minor compared to training the two from scratch.
- Abstract(参考訳): 限られた数の(典型的には自我中心の)ビューがあるロボティクスアプリケーションでは、ニューラルラディアンスフィールド(NeRF)のようなパラメトリック表現は、ガウススプラッティング(GS)のような非パラメトリックのビューよりも、トレーニングデータと非常に異なるビューに一般化される。
我々はこの2つを前後に変換する手順を開発する。
提案手法は,NRF (PSNR, SSIM, LPIPS) とGS (リアルタイムレンダリング, 表現の修正能力) の双方の利点を生かし, これらの変換の計算コストは, スクラッチからトレーニングするよりも小さかった。
関連論文リスト
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
スパース入力を用いた新しいビュー合成はニューラルラジアンス場(NeRF)に大きな課題をもたらす
近年の研究では、位置レンダリングの周波数規則化は、数発のNeRFに対して有望な結果が得られることが示されている。
我々は,AR-NeRFと呼ばれる数発のNeRFに対して適応レンダリング損失正規化を提案する。
論文 参考訳(メタデータ) (2024-10-23T13:05:26Z) - RS-NeRF: Neural Radiance Fields from Rolling Shutter Images [30.719764073204423]
本稿では,RS歪みを用いた入力を用いて,新しいビューから通常の画像を合成する手法であるRS-NeRFを提案する。
これは、RS条件下で画像形成過程を再現する物理モデルを含む。
さらに,基本RS-NeRFモデルの本質的な欠点を,RS特性を掘り下げ,その機能を強化するアルゴリズムを開発することで解決する。
論文 参考訳(メタデータ) (2024-07-14T16:27:11Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - CorresNeRF: Image Correspondence Priors for Neural Radiance Fields [45.40164120559542]
CorresNeRFは、市販の方法によって計算された画像対応の事前情報を利用して、NeRFトレーニングを監督する新しい手法である。
本手法は,異なるNeRF変種にまたがるプラグ・アンド・プレイモジュールとして適用可能であることを示す。
論文 参考訳(メタデータ) (2023-12-11T18:55:29Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z) - Is Attention All NeRF Needs? [103.51023982774599]
Generalizable NeRF Transformer (GNT) は、ソースビューから高速にNeRF(Neural Radiance Fields)を効率的に再構築する、純粋で統一されたトランスフォーマーベースのアーキテクチャである。
GNTは、2つのトランスフォーマーベースのステージをカプセル化することにより、一般化可能なニューラルシーン表現とレンダリングを実現する。
論文 参考訳(メタデータ) (2022-07-27T05:09:54Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
我々は,NeRFトレーニングの正規化にロバストなデータ拡張のパワーを初めてもたらすAugmented NeRF(Aug-NeRF)を提案する。
提案手法では,最悪の場合の摂動を3段階のNeRFパイプラインにシームレスにブレンドする。
Aug-NeRFは、新しいビュー合成と基礎となる幾何再構成の両方において、NeRF性能を効果的に向上させる。
論文 参考訳(メタデータ) (2022-07-04T02:27:07Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。