Deep Generative Models for 3D Medical Image Synthesis
- URL: http://arxiv.org/abs/2410.17664v1
- Date: Wed, 23 Oct 2024 08:33:23 GMT
- Title: Deep Generative Models for 3D Medical Image Synthesis
- Authors: Paul Friedrich, Yannik Frisch, Philippe C. Cattin,
- Abstract summary: Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
- Score: 1.931185411277237
- License:
- Abstract: Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images, driving advances in medical image analysis, disease diagnosis, and treatment planning. This chapter explores various deep generative models for 3D medical image synthesis, with a focus on Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Denoising Diffusion Models (DDMs). We discuss the fundamental principles, recent advances, as well as strengths and weaknesses of these models and examine their applications in clinically relevant problems, including unconditional and conditional generation tasks like image-to-image translation and image reconstruction. We additionally review commonly used evaluation metrics for assessing image fidelity, diversity, utility, and privacy and provide an overview of current challenges in the field.
Related papers
- Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization [12.753792457271953]
We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models.
We created synthetic images to incorporate the semantic variations and augmented the training data with these images.
We were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification.
arXiv Detail & Related papers (2024-10-07T15:09:50Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - MediSyn: Text-Guided Diffusion Models for Broad Medical 2D and 3D Image Synthesis [5.4476703187184246]
In medicine, this application promises to address the critical challenge of data scarcity.
By generating realistic and varying medical 2D and 3D images, these models offer a rich, privacy-respecting resource for algorithmic training and research.
We show significant improvement in broad medical image and video synthesis guided by text prompts.
arXiv Detail & Related papers (2024-05-16T04:28:44Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Deep Learning Approaches for Data Augmentation in Medical Imaging: A
Review [2.8145809047875066]
We focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models.
We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation.
Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
arXiv Detail & Related papers (2023-07-24T20:53:59Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
We present ViT-DAE, which integrates vision transformers (ViT) and diffusion autoencoders for high-quality histopathology image synthesis.
Our approach outperforms recent GAN-based and vanilla DAE methods in generating realistic images.
arXiv Detail & Related papers (2023-04-03T15:00:06Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.