Performance of Quantum Networks Using Heterogeneous Link Architectures
- URL: http://arxiv.org/abs/2405.09862v1
- Date: Thu, 16 May 2024 07:38:49 GMT
- Title: Performance of Quantum Networks Using Heterogeneous Link Architectures
- Authors: Kento Samuel Soon, Naphan Benchasattabuse, Michal HajduĊĦek, Kentaro Teramoto, Shota Nagayama, Rodney Van Meter,
- Abstract summary: We investigate the integration of two inherently different technologies, with one link where the photons flow from the nodes toward a device in the middle of the link, and a different link where pairs of photons flow from a device in the middle towards the nodes.
We find that increasing the pulse rate can actually decrease the overall performance.
Their performance is highly dependent on link configuration, but we observe no significant decrease in generation rate compared to homogeneous networks.
- Score: 0.3958317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The heterogeneity of quantum link architectures is an essential theme in designing quantum networks for technological interoperability and possibly performance optimization. However, the performance of heterogeneously connected quantum links has not yet been addressed. Here, we investigate the integration of two inherently different technologies, with one link where the photons flow from the nodes toward a device in the middle of the link, and a different link where pairs of photons flow from a device in the middle towards the nodes. We utilize the quantum internet simulator QuISP to conduct simulations. We first optimize the existing photon pair protocol for a single link by taking the pulse rate into account. Here, we find that increasing the pulse rate can actually decrease the overall performance. Using our optimized links, we demonstrate that heterogeneous networks actually work. Their performance is highly dependent on link configuration, but we observe no significant decrease in generation rate compared to homogeneous networks. This work provides insights into the phenomena we likely will observe when introducing technological heterogeneity into quantum networks, which is crucial for creating a scalable and robust quantum internetwork.
Related papers
- An Implementation and Analysis of a Practical Quantum Link Architecture Utilizing Entangled Photon Sources [0.3769303106863453]
This work advances the Memory-Source-Memory (MSM) link architecture, addressing the absence of practical implementation details.
We conduct numerical simulations using the Quantum Internet Simulation Package (QuISP) to analyze the performance of the MSM link.
We observe a saturation effect in the MSM link, where additional quantum resources do not affect the Bell pair generation rate of the link.
arXiv Detail & Related papers (2024-05-16T07:38:47Z) - Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - Advancing Quantum Networking: Some Tools and Protocols for Ideal and
Noisy Photonic Systems [0.0]
Photonic links enable quantum networking.
Photonic links will connect co-located quantum processors to enable large-scale quantum computers.
Photonic links will link distant nodes in space enabling new tests of fundamental physics.
arXiv Detail & Related papers (2024-03-04T22:06:21Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Architectures for Multinode Superconducting Quantum Computers [17.518262577853033]
One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects.
In this paper, we quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture.
We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links.
arXiv Detail & Related papers (2022-12-12T19:00:03Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.