Architectures for Multinode Superconducting Quantum Computers
- URL: http://arxiv.org/abs/2212.06167v1
- Date: Mon, 12 Dec 2022 19:00:03 GMT
- Title: Architectures for Multinode Superconducting Quantum Computers
- Authors: James Ang, Gabriella Carini, Yanzhu Chen, Isaac Chuang, Michael Austin
DeMarco, Sophia E. Economou, Alec Eickbusch, Andrei Faraon, Kai-Mei Fu,
Steven M. Girvin, Michael Hatridge, Andrew Houck, Paul Hilaire, Kevin
Krsulich, Ang Li, Chenxu Liu, Yuan Liu, Margaret Martonosi, David C. McKay,
James Misewich, Mark Ritter, Robert J. Schoelkopf, Samuel A. Stein, Sara
Sussman, Hong X. Tang, Wei Tang, Teague Tomesh, Norm M. Tubman, Chen Wang,
Nathan Wiebe, Yong-Xin Yao, Dillon C. Yost, Yiyu Zhou
- Abstract summary: One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects.
In this paper, we quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture.
We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links.
- Score: 17.518262577853033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many proposals to scale quantum technology rely on modular or distributed
designs where individual quantum processors, called nodes, are linked together
to form one large multinode quantum computer (MNQC). One scalable method to
construct an MNQC is using superconducting quantum systems with optical
interconnects. However, a limiting factor of these machines will be internode
gates, which may be two to three orders of magnitude noisier and slower than
local operations. Surmounting the limitations of internode gates will require a
range of techniques, including improvements in entanglement generation, the use
of entanglement distillation, and optimized software and compilers, and it
remains unclear how improvements to these components interact to affect overall
system performance, what performance from each is required, or even how to
quantify the performance of each. In this paper, we employ a `co-design'
inspired approach to quantify overall MNQC performance in terms of hardware
models of internode links, entanglement distillation, and local architecture.
In the case of superconducting MNQCs with microwave-to-optical links, we
uncover a tradeoff between entanglement generation and distillation that
threatens to degrade performance. We show how to navigate this tradeoff, lay
out how compilers should optimize between local and internode gates, and
discuss when noisy quantum links have an advantage over purely classical links.
Using these results, we introduce a roadmap for the realization of early MNQCs
which illustrates potential improvements to the hardware and software of MNQCs
and outlines criteria for evaluating the landscape, from progress in
entanglement generation and quantum memory to dedicated algorithms such as
distributed quantum phase estimation. While we focus on superconducting devices
with optical interconnects, our approach is general across MNQC
implementations.
Related papers
- Benchmarking Emerging Cavity-Mediated Quantum Interconnect Technologies for Modular Quantum Computers [1.0653685964361501]
This work presents a comparative analysis of the cavity-mediated interconnect technologies according to a defined figure of merit.
We identify the configurations related to the cavity and atomic decay rates as well as the qubit-cavity coupling strength that meet the efficiency thresholds.
arXiv Detail & Related papers (2024-07-22T14:11:20Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - MECH: Multi-Entry Communication Highway for Superconducting Quantum
Chiplets [8.331379159321271]
As the computing scale increases, communication between qubits would become a more severe bottleneck.
We propose a multi-entry communication highway (MECH) mechanism to trade ancillary qubits for program.
This implies a more efficient and less error-prone compilation of quantum programs.
arXiv Detail & Related papers (2023-05-09T03:20:56Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Characterizing Qubit Traffic of a Quantum Intranet aiming at Modular
Quantum Computers [1.8602413562219944]
Quantum-core processors are envisioned as the ultimate solution for the scalability of quantum computers.
We present a technique to perform a-temporal characterization of quantum circuits running in multi-chip interconnected quantum computers.
arXiv Detail & Related papers (2022-08-31T21:33:17Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.