Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging
- URL: http://arxiv.org/abs/2405.09955v2
- Date: Fri, 17 May 2024 08:35:51 GMT
- Title: Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging
- Authors: Usman A. Zahidi, Krystian Ĺukasik, Grzegorz Cielniak,
- Abstract summary: The maturity classification of specialty crops such as strawberries and tomatoes is an essential agricultural downstream activity.
Recent advancements in Deep Learning have produced encouraging results in color images for maturity classification applications.
We present a feature extraction method to compute yet distinctive features for the maturity classification.
- Score: 5.905721043072562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The maturity classification of specialty crops such as strawberries and tomatoes is an essential agricultural downstream activity for selective harvesting and quality control (QC) at production and packaging sites. Recent advancements in Deep Learning (DL) have produced encouraging results in color images for maturity classification applications. However, hyperspectral imaging (HSI) outperforms methods based on color vision. Multivariate analysis methods and Convolutional Neural Networks (CNN) deliver promising results; however, a large amount of input data and the associated preprocessing requirements cause hindrances in practical application. Conventionally, the reflectance intensity in a given electromagnetic spectrum is employed in estimating fruit maturity. We present a feature extraction method to empirically demonstrate that the peak reflectance in subbands such as 500-670 nm (pigment band) and the wavelength of the peak position, and contrarily, the trough reflectance and its corresponding wavelength within 671-790 nm (chlorophyll band) are convenient to compute yet distinctive features for the maturity classification. The proposed feature selection method is beneficial because preprocessing, such as dimensionality reduction, is avoided before every prediction. The feature set is designed to capture these traits. The best SOTA methods, among 3D-CNN, 1D-CNN, and SVM, achieve at most 90.0 % accuracy for strawberries and 92.0 % for tomatoes on our dataset. Results show that the proposed method outperforms the SOTA as it yields an accuracy above 98.0 % in strawberry and 96.0 % in tomato classification. A comparative analysis of the time efficiency of these methods is also conducted, which shows the proposed method performs prediction at 13 Frames Per Second (FPS) compared to the maximum 1.16 FPS attained by the full-spectrum SVM classifier.
Related papers
- Enhancing Apple's Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging [0.0]
This study addresses the classification of defects in apples as a crucial measure to mitigate economic losses and optimize the food supply chain.
An innovative approach is employed that integrates images from the visible spectrum and 660 nm spectral wavelength to enhance accuracy and efficiency in defect classification.
arXiv Detail & Related papers (2024-10-14T21:37:26Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
Saliency prediction models are constrained by the limited diversity and quantity of labeled data.
We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and variability of real-world scenes.
arXiv Detail & Related papers (2024-09-11T14:36:24Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
We used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment.
Optical character recognition (OCR) was used to read these labels on the plants.
Machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes.
arXiv Detail & Related papers (2024-07-08T19:46:31Z) - Deep learning for automated detection of breast cancer in deep ultraviolet fluorescence images with diffusion probabilistic model [6.658963545934998]
diffusion probabilistic model (DPM) has shown potential to generate high-quality images.
In this paper, we apply DPM to augment the deep ultraviolet fluorescence (DUV) image dataset with an aim to improve breast cancer classification.
arXiv Detail & Related papers (2024-07-01T05:00:26Z) - Multi-scale Spatio-temporal Transformer-based Imbalanced Longitudinal
Learning for Glaucoma Forecasting from Irregular Time Series Images [45.894671834869975]
Glaucoma is one of the major eye diseases that leads to progressive optic nerve fiber damage and irreversible blindness.
We introduce the Multi-scale Spatio-temporal Transformer Network (MST-former) based on the transformer architecture tailored for sequential image inputs.
Our method shows excellent generalization capability on the Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI dataset, with an accuracy of 90.3% for mild cognitive impairment and Alzheimer's disease prediction.
arXiv Detail & Related papers (2024-02-21T02:16:59Z) - Generating high-quality 3DMPCs by adaptive data acquisition and
NeREF-based radiometric calibration with UGV plant phenotyping system [3.7387019397567793]
This study proposed a novel approach for adaptive data acquisition and radiometric calibration to generate high-quality 3DMPCs of plants.
The integrity of the whole-plant data was improved by an average of 23.6% compared to the fixed viewpoints alone.
The 3D-calibrated plant 3DMPCs improved the predictive accuracy of PLSR for chlorophyll content, with an average increase of 0.07 in R2 and an average decrease of 21.25% in RMSE.
arXiv Detail & Related papers (2023-05-11T12:59:21Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
In this paper, we focus on the reaction yield prediction problem.
We first put forth MetaRF, an attention-based differentiable random forest model specially designed for the few-shot yield prediction.
To improve the few-shot learning performance, we further introduce a dimension-reduction based sampling method.
arXiv Detail & Related papers (2022-08-22T06:40:13Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.