Online Estimation of Table-Top Grown Strawberry Mass in Field Conditions with Occlusions
- URL: http://arxiv.org/abs/2507.23487v1
- Date: Thu, 31 Jul 2025 12:10:23 GMT
- Title: Online Estimation of Table-Top Grown Strawberry Mass in Field Conditions with Occlusions
- Authors: Jinshan Zhen, Yuanyue Ge, Tianxiao Zhu, Hui Zhao, Ya Xiong,
- Abstract summary: This study proposes a vision-based pipeline integrating RGB-D sensing and deep learning to enable non-destructive, real-time and online mass estimation.<n>Experiments demonstrated mean mass estimation errors of 8.11% for isolated strawberries and 10.47% for occluded cases.
- Score: 2.736203444988168
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate mass estimation of table-top grown strawberries under field conditions remains challenging due to frequent occlusions and pose variations. This study proposes a vision-based pipeline integrating RGB-D sensing and deep learning to enable non-destructive, real-time and online mass estimation. The method employed YOLOv8-Seg for instance segmentation, Cycle-consistent generative adversarial network (CycleGAN) for occluded region completion, and tilt-angle correction to refine frontal projection area calculations. A polynomial regression model then mapped the geometric features to mass. Experiments demonstrated mean mass estimation errors of 8.11% for isolated strawberries and 10.47% for occluded cases. CycleGAN outperformed large mask inpainting (LaMa) model in occlusion recovery, achieving superior pixel area ratios (PAR) (mean: 0.978 vs. 1.112) and higher intersection over union (IoU) scores (92.3% vs. 47.7% in the [0.9-1] range). This approach addresses critical limitations of traditional methods, offering a robust solution for automated harvesting and yield monitoring with complex occlusion patterns.
Related papers
- ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOST is a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction.<n>Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data.
arXiv Detail & Related papers (2025-06-12T06:27:22Z) - Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.<n> diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.<n>We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - Minimax Regret Estimation for Generalizing Heterogeneous Treatment Effects with Multisite Data [3.434624857389692]
We develop a robust CATE (conditional average treatment effect) estimation methodology with multisite data from heterogeneous populations.<n>We show that the resulting CATE model has an interpretable closed-form solution, expressed as a weighted average of site-specific CATE models.
arXiv Detail & Related papers (2024-12-15T10:00:07Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Sampling is a novel variational inference approach for efficient posterior sampling in inverse problems.<n>Our method trains a conditional flow model to minimize the divergence between the variational distribution and the posterior distribution implicitly defined by the diffusion model.<n>Unlike existing methods, our approach is unsupervised, requires no paired training data, and is applicable to both Euclidean and non-Euclidean domains.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging [5.905721043072562]
The maturity classification of specialty crops such as strawberries and tomatoes is an essential agricultural downstream activity.
Recent advancements in Deep Learning have produced encouraging results in color images for maturity classification applications.
We present a feature extraction method to compute yet distinctive features for the maturity classification.
arXiv Detail & Related papers (2024-05-16T10:01:16Z) - RULSurv: A probabilistic survival-based method for early censoring-aware prediction of remaining useful life in ball bearings [39.58317527488534]
We introduce a novel and flexible method for early fault detection using Kullback-Leibler divergence and RUL estimation.<n>We demonstrate our approach in the XJTU-SY dataset using a 5-fold cross-validation strategy across three different operating conditions.<n>Our approach achieves a mean cumulative relative accuracy (CRA) of 0.7586 over 5 bearings under the highest load, which improves over several state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-02T16:17:29Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Fast Bayesian Estimation of Spatial Count Data Models [0.0]
We introduce Variational Bayes (VB) as an optimisation problem instead of a simulation problem.
A VB method is derived for posterior inference in negative binomial models with unobserved parameter and spatial dependence.
The VB approach is around 45 to 50 times faster than MCMC on a regular eight-core processor in a simulation and an empirical study.
arXiv Detail & Related papers (2020-07-07T10:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.