Enhancing Apple's Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging
- URL: http://arxiv.org/abs/2410.19784v1
- Date: Mon, 14 Oct 2024 21:37:26 GMT
- Title: Enhancing Apple's Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging
- Authors: Omar Coello, Moisés Coronel, Darío Carpio, Boris Vintimilla, Luis Chuquimarca,
- Abstract summary: This study addresses the classification of defects in apples as a crucial measure to mitigate economic losses and optimize the food supply chain.
An innovative approach is employed that integrates images from the visible spectrum and 660 nm spectral wavelength to enhance accuracy and efficiency in defect classification.
- Score: 0.0
- License:
- Abstract: This study addresses the classification of defects in apples as a crucial measure to mitigate economic losses and optimize the food supply chain. An innovative approach is employed that integrates images from the visible spectrum and 660 nm spectral wavelength to enhance accuracy and efficiency in defect classification. The methodology is based on the use of Single-Input and Multi-Inputs convolutional neural networks (CNNs) to validate the proposed strategies. Steps include image acquisition and preprocessing, classification model training, and performance evaluation. Results demonstrate that defect classification using the 660 nm spectral wavelength reveals details not visible in the entire visible spectrum. It is seen that the use of the appropriate spectral range in the classification process is slightly superior to the entire visible spectrum. The MobileNetV1 model achieves an accuracy of 98.80\% on the validation dataset versus the 98.26\% achieved using the entire visible spectrum. Conclusions highlight the potential to enhance the method by capturing images with specific spectral ranges using filters, enabling more effective network training for classification task. These improvements could further enhance the system's capability to identify and classify defects in apples.
Related papers
- Capsule Endoscopy Multi-classification via Gated Attention and Wavelet Transformations [1.5146068448101746]
Abnormalities in the gastrointestinal tract significantly influence the patient's health and require a timely diagnosis.
The work presents the process of developing and evaluating a novel model designed to classify gastrointestinal anomalies from a video frame.
integration of Omni Dimensional Gated Attention (OGA) mechanism and Wavelet transformation techniques into the model's architecture allowed the model to focus on the most critical areas.
The model's performance is benchmarked against two base models, VGG16 and ResNet50, demonstrating its enhanced ability to identify and classify a range of gastrointestinal abnormalities accurately.
arXiv Detail & Related papers (2024-10-25T08:01:35Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects [0.21990652930491852]
In semiconductor manufacturing, the wafer dicing process is central yet vulnerable to defects that significantly impair yield.
Deep neural networks are the current state of the art in (semi-)automated visual inspection.
We explore the application of generative adversarial networks (GAN) for image data augmentation and classification of semiconductor wafer dicing induced defects.
arXiv Detail & Related papers (2024-07-24T20:44:16Z) - Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging [5.905721043072562]
The maturity classification of specialty crops such as strawberries and tomatoes is an essential agricultural downstream activity.
Recent advancements in Deep Learning have produced encouraging results in color images for maturity classification applications.
We present a feature extraction method to compute yet distinctive features for the maturity classification.
arXiv Detail & Related papers (2024-05-16T10:01:16Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Classification robustness to common optical aberrations [64.08840063305313]
This paper proposes OpticsBench, a benchmark for investigating robustness to realistic, practically relevant optical blur effects.
Experiments on ImageNet show that for a variety of different pre-trained DNNs, the performance varies strongly compared to disk-shaped kernels.
We show on ImageNet-100 with OpticsAugment that can be increased by using optical kernels as data augmentation.
arXiv Detail & Related papers (2023-08-29T08:36:00Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z) - Prediction of low-keV monochromatic images from polyenergetic CT scans
for improved automatic detection of pulmonary embolism [21.47219330040151]
We are training convolutional neural networks that can emulate the generation of monoE images from conventional single energy CT acquisitions.
We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results.
arXiv Detail & Related papers (2021-02-02T11:42:31Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
We propose Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra.
We obtain a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.
arXiv Detail & Related papers (2020-08-26T15:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.