$Δ\text{-}{\rm OPE}$: Off-Policy Estimation with Pairs of Policies
- URL: http://arxiv.org/abs/2405.10024v2
- Date: Mon, 16 Sep 2024 09:30:40 GMT
- Title: $Δ\text{-}{\rm OPE}$: Off-Policy Estimation with Pairs of Policies
- Authors: Olivier Jeunen, Aleksei Ustimenko,
- Abstract summary: We introduce $Deltatext-rm OPE$ methods based on the widely used Inverse Propensity Scoring estimator.
Simulated, offline, and online experiments show that our methods significantly improve performance for both evaluation and learning tasks.
- Score: 13.528097424046823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The off-policy paradigm casts recommendation as a counterfactual decision-making task, allowing practitioners to unbiasedly estimate online metrics using offline data. This leads to effective evaluation metrics, as well as learning procedures that directly optimise online success. Nevertheless, the high variance that comes with unbiasedness is typically the crux that complicates practical applications. An important insight is that the difference between policy values can often be estimated with significantly reduced variance, if said policies have positive covariance. This allows us to formulate a pairwise off-policy estimation task: $\Delta\text{-}{\rm OPE}$. $\Delta\text{-}{\rm OPE}$ subsumes the common use-case of estimating improvements of a learnt policy over a production policy, using data collected by a stochastic logging policy. We introduce $\Delta\text{-}{\rm OPE}$ methods based on the widely used Inverse Propensity Scoring estimator and its extensions. Moreover, we characterise a variance-optimal additive control variate that further enhances efficiency. Simulated, offline, and online experiments show that our methods significantly improve performance for both evaluation and learning tasks.
Related papers
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Conformal Off-Policy Evaluation in Markov Decision Processes [53.786439742572995]
Reinforcement Learning aims at identifying and evaluating efficient control policies from data.
Most methods for this learning task, referred to as Off-Policy Evaluation (OPE), do not come with accuracy and certainty guarantees.
We present a novel OPE method based on Conformal Prediction that outputs an interval containing the true reward of the target policy with a prescribed level of certainty.
arXiv Detail & Related papers (2023-04-05T16:45:11Z) - Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design [18.326126953667842]
We propose novel methods that improve the data efficiency of online Monte Carlo estimators.
We first propose a tailored closed-form behavior policy that provably reduces the variance of an online Monte Carlo estimator.
We then design efficient algorithms to learn this closed-form behavior policy from previously collected offline data.
arXiv Detail & Related papers (2023-01-31T16:12:31Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Optimal Mixture Weights for Off-Policy Evaluation with Multiple Behavior
Policies [3.855085732184416]
Off-policy evaluation is a key component of reinforcement learning which evaluates a target policy with offline data collected from behavior policies.
This paper discusses how to correctly mix estimators produced by different behavior policies.
Experiments on simulated recommender systems show that our methods are effective in reducing the Mean-Square Error of estimation.
arXiv Detail & Related papers (2020-11-29T12:57:54Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.