TD-M(PC)$^2$: Improving Temporal Difference MPC Through Policy Constraint
- URL: http://arxiv.org/abs/2502.03550v1
- Date: Wed, 05 Feb 2025 19:08:42 GMT
- Title: TD-M(PC)$^2$: Improving Temporal Difference MPC Through Policy Constraint
- Authors: Haotian Lin, Pengcheng Wang, Jeff Schneider, Guanya Shi,
- Abstract summary: Model-based reinforcement learning algorithms combine model-based planning and learned value/policy prior.
Existing methods that rely on standard SAC-style policy iteration for value learning often result in emphpersistent value overestimation.
We propose a policy regularization term reducing out-of-distribution (OOD) queries, thereby improving value learning.
- Score: 11.347808936693152
- License:
- Abstract: Model-based reinforcement learning algorithms that combine model-based planning and learned value/policy prior have gained significant recognition for their high data efficiency and superior performance in continuous control. However, we discover that existing methods that rely on standard SAC-style policy iteration for value learning, directly using data generated by the planner, often result in \emph{persistent value overestimation}. Through theoretical analysis and experiments, we argue that this issue is deeply rooted in the structural policy mismatch between the data generation policy that is always bootstrapped by the planner and the learned policy prior. To mitigate such a mismatch in a minimalist way, we propose a policy regularization term reducing out-of-distribution (OOD) queries, thereby improving value learning. Our method involves minimum changes on top of existing frameworks and requires no additional computation. Extensive experiments demonstrate that the proposed approach improves performance over baselines such as TD-MPC2 by large margins, particularly in 61-DoF humanoid tasks. View qualitative results at https://darthutopian.github.io/tdmpc_square/.
Related papers
- $Δ\text{-}{\rm OPE}$: Off-Policy Estimation with Pairs of Policies [13.528097424046823]
We introduce $Deltatext-rm OPE$ methods based on the widely used Inverse Propensity Scoring estimator.
Simulated, offline, and online experiments show that our methods significantly improve performance for both evaluation and learning tasks.
arXiv Detail & Related papers (2024-05-16T12:04:55Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Value Enhancement of Reinforcement Learning via Efficient and Robust
Trust Region Optimization [14.028916306297928]
Reinforcement learning (RL) is a powerful machine learning technique that enables an intelligent agent to learn an optimal policy.
We propose a novel value enhancement method to improve the performance of a given initial policy computed by existing state-of-the-art RL algorithms.
arXiv Detail & Related papers (2023-01-05T18:43:40Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Model-based trajectory stitching for improved behavioural cloning and
its applications [7.462336024223669]
Trajectory Stitching (TS) generates new trajectories by stitching' pairs of states that were disconnected in the original data.
We demonstrate that the iterative process of replacing old trajectories with new ones incrementally improves the underlying behavioural policy.
arXiv Detail & Related papers (2022-12-08T14:18:04Z) - Mutual Information Regularized Offline Reinforcement Learning [76.05299071490913]
We propose a novel MISA framework to approach offline RL from the perspective of Mutual Information between States and Actions in the dataset.
We show that optimizing this lower bound is equivalent to maximizing the likelihood of a one-step improved policy on the offline dataset.
We introduce 3 different variants of MISA, and empirically demonstrate that tighter mutual information lower bound gives better offline RL performance.
arXiv Detail & Related papers (2022-10-14T03:22:43Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.