MrRegNet: Multi-resolution Mask Guided Convolutional Neural Network for Medical Image Registration with Large Deformations
- URL: http://arxiv.org/abs/2405.10068v1
- Date: Thu, 16 May 2024 12:57:03 GMT
- Title: MrRegNet: Multi-resolution Mask Guided Convolutional Neural Network for Medical Image Registration with Large Deformations
- Authors: Ruizhe Li, Grazziela Figueredo, Dorothee Auer, Christian Wagner, Xin Chen,
- Abstract summary: MrRegNet is a mask-guided encoder-decoder DCNN-based image registration method.
Image alignment accuracies are significantly improved at local regions guided by segmentation masks.
- Score: 6.919880141683284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration (alignment) is highly sought after in numerous clinical applications, such as computer aided diagnosis and disease progression analysis. Deep Convolutional Neural Network (DCNN)-based image registration methods have demonstrated advantages in terms of registration accuracy and computational speed. However, while most methods excel at global alignment, they often perform worse in aligning local regions. To address this challenge, this paper proposes a mask-guided encoder-decoder DCNN-based image registration method, named as MrRegNet. This approach employs a multi-resolution encoder for feature extraction and subsequently estimates multi-resolution displacement fields in the decoder to handle the substantial deformation of images. Furthermore, segmentation masks are employed to direct the model's attention toward aligning local regions. The results show that the proposed method outperforms traditional methods like Demons and a well-known deep learning method, VoxelMorph, on a public 3D brain MRI dataset (OASIS) and a local 2D brain MRI dataset with large deformations. Importantly, the image alignment accuracies are significantly improved at local regions guided by segmentation masks. Github link:https://github.com/ruizhe-l/MrRegNet.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - Pyramid Attention Network for Medical Image Registration [4.142556531859984]
We propose a pyramid attention network (PAN) for deformable medical image registration.
PAN incorporates a dual-stream pyramid encoder with channel-wise attention to boost the feature representation.
Our method achieves favorable registration performance, while outperforming several CNN-based and Transformer-based registration networks.
arXiv Detail & Related papers (2024-02-14T08:46:18Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Unsupervised MMRegNet based on Spatially Encoded Gradient Information [16.355832135847276]
Multi-modality medical images can provide relevant and complementary anatomical information for a target (organ, tumor or tissue)
It is still challenging to develop a multi-modality registration network due to the lack of robust criteria for network training.
In this work, we propose a multi-modality registration network (MMRegNet), which can jointly register multiple images with different modalities to a target image.
arXiv Detail & Related papers (2021-05-16T09:47:42Z) - Deep Convolutional Neural Network for Non-rigid Image Registration [0.0]
In this report, I will explore the ability of a deep neural network (DNN) and, more specifically, a deep convolutional neural network (CNN) to efficiently perform non-rigid image registration.
The experimental results show that a CNN can be used for efficient non-rigid image registration and in significantly less computational time than a conventional Diffeomorphic Demons or Pyramiding approach.
arXiv Detail & Related papers (2021-04-24T23:24:29Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - F3RNet: Full-Resolution Residual Registration Network for Deformable
Image Registration [21.99118499516863]
Deformable image registration (DIR) is essential for many image-guided therapies.
We propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet)
One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration.
The other stream learns the deep multi-scale residual representations to obtain robust recognition.
arXiv Detail & Related papers (2020-09-15T15:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.