論文の概要: Generating Coherent Sequences of Visual Illustrations for Real-World Manual Tasks
- arxiv url: http://arxiv.org/abs/2405.10122v1
- Date: Thu, 16 May 2024 14:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:02:34.227854
- Title: Generating Coherent Sequences of Visual Illustrations for Real-World Manual Tasks
- Title(参考訳): 実世界の手作業における視覚図形のコヒーレントシーケンスの生成
- Authors: João Bordalo, Vasco Ramos, Rodrigo Valério, Diogo Glória-Silva, Yonatan Bitton, Michal Yarom, Idan Szpektor, Joao Magalhaes,
- Abstract要約: 本稿では,一貫した画像列を生成する手法を提案する。
実験の結果、提案されたアプローチは46.6%のケースでヒトが好んでいることが示された。
- 参考スコア(独自算出の注目度): 8.346173383939961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multistep instructions, such as recipes and how-to guides, greatly benefit from visual aids, such as a series of images that accompany the instruction steps. While Large Language Models (LLMs) have become adept at generating coherent textual steps, Large Vision/Language Models (LVLMs) are less capable of generating accompanying image sequences. The most challenging aspect is that each generated image needs to adhere to the relevant textual step instruction, as well as be visually consistent with earlier images in the sequence. To address this problem, we propose an approach for generating consistent image sequences, which integrates a Latent Diffusion Model (LDM) with an LLM to transform the sequence into a caption to maintain the semantic coherence of the sequence. In addition, to maintain the visual coherence of the image sequence, we introduce a copy mechanism to initialise reverse diffusion processes with a latent vector iteration from a previously generated image from a relevant step. Both strategies will condition the reverse diffusion process on the sequence of instruction steps and tie the contents of the current image to previous instruction steps and corresponding images. Experiments show that the proposed approach is preferred by humans in 46.6% of the cases against 26.6% for the second best method. In addition, automatic metrics showed that the proposed method maintains semantic coherence and visual consistency across steps in both domains.
- Abstract(参考訳): レシピやハウツーガイドなどのマルチステップ命令は、命令ステップに付随する一連の画像のような視覚的補助の恩恵を受ける。
大規模言語モデル(LLM)はコヒーレントなテキストステップを生成するのに適しているが、LVLM(Large Vision/Language Models)は付随する画像シーケンスを生成することができない。
最も難しい側面は、生成した各画像が関連するテキストステップ命令に準拠し、シーケンス内の以前の画像と視覚的に整合性を持つ必要があることである。
この問題に対処するため,LLM に遅延拡散モデル (LDM) を組み込んだ一貫した画像系列を生成する手法を提案し,シーケンスのセマンティックコヒーレンスを維持するために,シーケンスをキャプションに変換する。
さらに,画像シーケンスの視覚的コヒーレンスを維持するために,以前に生成された画像から遅延ベクトル反復で逆拡散過程を初期化するコピー機構を導入する。
どちらの戦略も、命令ステップのシーケンス上で逆拡散プロセスを条件化し、現在の画像の内容と以前の命令ステップと対応する画像とを結びつける。
実験の結果、提案手法は46.6%でヒトに好まれ、26.6%では第2の方法が好まれることがわかった。
さらに,提案手法は両領域のステップ間のセマンティック・コヒーレンスと視覚的一貫性を維持できることを示した。
関連論文リスト
- ImPoster: Text and Frequency Guidance for Subject Driven Action Personalization using Diffusion Models [55.43801602995778]
提案するImPosterは,「運転」動作を行う「ソース」対象のターゲット画像を生成する新しいアルゴリズムである。
私たちのアプローチは完全に教師なしで、キーポイントやポーズといった追加のアノテーションへのアクセスは不要です。
論文 参考訳(メタデータ) (2024-09-24T01:25:19Z) - Semantic Alignment for Multimodal Large Language Models [72.10272479476161]
多モード大言語モデル(SAM)のセマンティックアライメントについて紹介する。
画像間の双方向的意味指導を視覚的・視覚的抽出プロセスに組み込むことにより,コヒーレント解析のためのリンク情報の保存性を高めることを目的とする。
画像間の双方向的意味指導を視覚的・視覚的抽出プロセスに組み込むことにより,コヒーレント解析のためのリンク情報の保存性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-08-23T06:48:46Z) - Coherent Zero-Shot Visual Instruction Generation [15.0521272616551]
本稿では,視覚的指示を生成する際の課題に対処するための,簡単な学習不要のフレームワークを提案する。
本手法は,視覚的指示が視覚的に魅力的であることを保証するために,テキスト理解と画像生成を体系的に統合する。
実験の結果,コヒーレントで視覚的な指示を可視化できることがわかった。
論文 参考訳(メタデータ) (2024-06-06T17:59:44Z) - TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation [44.740794326596664]
TheaterGenは、大規模な言語モデル(LLM)とテキスト・ツー・イメージ(T2I)モデルを統合した、トレーニング不要のフレームワークである。
このフレームワーク内では、LLMは"Screenwriter"として機能し、マルチターンインタラクションを行い、標準化されたプロンプトブックを生成し管理する。
プロンプトブックとキャラクタイメージの効果的な管理により、StaceGenは合成画像のセマンティックとコンテキスト整合性を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-29T17:58:14Z) - Masked Generative Story Transformer with Character Guidance and Caption
Augmentation [2.1392064955842023]
ストーリービジュアライゼーションは、生成した画像シーケンス内の異なるフレーム間の視覚的品質と一貫性の両方を必要とする、難しい生成的視覚タスクである。
以前のアプローチでは、イメージシーケンスの自動回帰生成を通してコンテキストを維持するために何らかのメモリメカニズムを使用していたり、文字とその背景の生成を別々にモデル化したりしていた。
我々は,過去と将来のキャプションとのクロスアテンションに頼って整合性を実現する,完全に並列なトランスフォーマーベースのアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-13T13:10:20Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
非対称勾配法の適用により拡散サンプリングの逆過程を導出する手法を提案する。
我々のモデルの適応性は、画像融合モデルと潜時拡散モデルの両方で実装できる。
実験により,本手法は画像翻訳タスクにおいて,様々な最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-07T12:56:56Z) - RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment [112.45442468794658]
本稿では,RealignDiffという2段階の粗大なセマンティックアライメント手法を提案する。
粗いセマンティックリアライメントフェーズにおいて、生成された画像キャプションと与えられたテキストプロンプトとのセマンティックな相違を評価するために、新しいキャプション報酬を提案する。
微妙なセマンティックリアライメントステージは、局所的な密集キャプション生成モジュールと再重み付けアテンション変調モジュールを用いて、局所的なセマンティックビューから生成された画像を洗練する。
論文 参考訳(メタデータ) (2023-05-31T06:59:21Z) - ImageBART: Bidirectional Context with Multinomial Diffusion for
Autoregressive Image Synthesis [15.006676130258372]
自己回帰モデルは、以前に合成された画像パッチを上または左にのみ参加することで、コンテキストを線形1次元順序で組み込む。
自己回帰的定式化と多項拡散過程を組み合わせたコンテキストの粗大な階層構造を提案する。
当社のアプローチは、ローカルな画像編集を行うために、制限のない、ユーザが提供するマスクを考慮に入れることができる。
論文 参考訳(メタデータ) (2021-08-19T17:50:07Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
本稿では,テキスト・ツー・イメージ・ジェネレーションとテキスト・ガイドによる画像操作を行うために,Cycle-Consistent Inverse GANの統一フレームワークを提案する。
我々は、GANの反転モデルを学び、画像をGANの潜在空間に変換し、各画像の反転潜在符号を得る。
テキスト誘導最適化モジュールでは、反転潜在符号を最適化することにより、所望のセマンティック属性を持つ画像を生成する。
論文 参考訳(メタデータ) (2021-08-03T08:38:16Z) - Bi-Granularity Contrastive Learning for Post-Training in Few-Shot Scene [10.822477939237459]
トークンレベルとシーケンスレベルの両方のコントラスト学習を統合するために,ポストトレーニングのためのコントラストマスク言語モデリング(CMLM)を提案する。
CMLMは、データ拡張を必要とせずに、数ショット設定で、最近のいくつかのポストトレーニングメソッドを超越している。
論文 参考訳(メタデータ) (2021-06-04T08:17:48Z) - Towards Open-World Text-Guided Face Image Generation and Manipulation [52.83401421019309]
顔画像生成と操作の両方に統一的なフレームワークを提案する。
本手法は,画像とテキストの両方を含むオープンワールドシナリオをサポートし,再トレーニングや微調整,後処理は行わない。
論文 参考訳(メタデータ) (2021-04-18T16:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。