論文の概要: Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
- arxiv url: http://arxiv.org/abs/2405.10123v2
- Date: Tue, 28 May 2024 18:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:32:31.919510
- Title: Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
- Title(参考訳): 任意遅延下における不均一物体の非同期フェデレーション確率最適化
- Authors: Charikleia Iakovidou, Kibaek Kim,
- Abstract要約: フェデレートラーニング(FL)は、データを複数の場所に保持するモデル("clients")をセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、階層化クライアントによって引き起こされる長いトレーニング時間と、非イドローカルなデータ分布("client drift")によるモデル精度の低下である。
本稿では,Asynchronous Exact Averaging (AREA, Asynchronous Exact Averaging) を提案する。Asynchronous Exact Averaging (AREA) は,通信を利用して収束を高速化し,拡張性を向上し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients") under the coordination of a central server. Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift"). In this work, we propose and analyze Asynchronous Exact Averaging (AREA), a new stochastic (sub)gradient algorithm that utilizes asynchronous communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies. Moreover, AREA is, to the best of our knowledge, the first method that is guaranteed to converge under arbitrarily long delays, without the use of delay-adaptive stepsizes, and (i) for strongly convex, smooth functions, asymptotically converges to an error neighborhood whose size depends only on the variance of the stochastic gradients used with respect to the number of iterations, and (ii) for convex, non-smooth functions, matches the convergence rate of the centralized stochastic subgradient method up to a constant factor, which depends on the average of the individual client update frequencies instead of their minimum (or maximum). Our numerical results validate our theoretical analysis and indicate AREA outperforms state-of-the-art methods when local data are highly non-iid, especially as the number of clients grows.
- Abstract(参考訳): フェデレートラーニング(FL)は、中央サーバの協調の下で、複数の場所("clients")に保持されたデータでモデルをセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、クライアントの階層化による長いトレーニング時間と、非IDなローカルデータ分布("client drift")下でのモデルの精度の低下である。
本研究では,非同期通信を利用して収束を高速化し,拡張性を向上するアルゴリズムであるAsynchronous Exact Averaging (AREA) を提案・解析し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
さらに、AREAは、私たちの知る限り、遅延適応段階化を使わずに、任意に長い遅延の下で収束することが保証される最初の方法である。
i) 強凸で滑らかな関数に対して、漸近的にその大きさが反復数に関して使われる確率勾配の分散にのみ依存する誤差近傍に収束する。
(ii) 凸で非滑らかな関数の場合, 集中確率勾配法の収束率を, 最小(または最大)ではなく, 個々のクライアント更新頻度の平均に依存する定数因子に一致させる。
解析の結果,特にクライアント数の増加に伴い,ローカルデータが非IDである場合,AREAは最先端の手法よりも優れることが示された。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates [28.813671194939225]
完全に分散化された最適化手法は、人気のあるパラメータサーバフレームワークに代わるものとして提唱されている。
本稿では、各労働者が通信する近隣労働者の数を適応的に決定することで、適応的な非同期更新を施した完全に分散化されたアルゴリズムを提案する。
DSGD-AAUは収束の線形高速化を実現し,その有効性を示す。
論文 参考訳(メタデータ) (2023-06-11T02:08:59Z) - Federated Minimax Optimization with Client Heterogeneity [11.558008138030845]
ミニマックス計算は、GANのような先進的な近代的応用に注目が集まっている。
そこで我々は,ローカルSGDAのような設定や既存手法を前提とした汎用のミニマックスフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-08T18:33:55Z) - AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
Estimation [12.62716075696359]
フェデレートラーニング(FL)では、多くのクライアントやデバイスが協力して、データを共有せずにモデルをトレーニングします。
このドリフトを推定・除去するために、近年FL最適化に分散低減技術が組み込まれている。
本稿では,クライアント間のドリフトを正確に推定する適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-27T20:04:24Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMOは最初の(一階)FLtexttFedGLOMOアルゴリズムです。
クライアントとサーバ間の通信においても,我々のアルゴリズムは確実に最適である。
論文 参考訳(メタデータ) (2020-12-07T21:05:31Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
本稿では、フェデレートされた異種最適化アルゴリズムの収束性を分析するためのフレームワークを提供する。
我々は,高速な誤差収束を保ちながら,客観的な矛盾を解消する正規化平均化手法であるFedNovaを提案する。
論文 参考訳(メタデータ) (2020-07-15T05:01:23Z) - Distributed Non-Convex Optimization with Sublinear Speedup under
Intermittent Client Availability [46.85205907718874]
フェデレーション学習は新しい機械学習フレームワークで、多くのクライアントがトレーニングデータを共有することなく、協力的にモデルをトレーニングする。
本研究では,間欠的なモバイル環境におけるフェデレーション学習の実践と課題について考察する。
我々はFedLaAvg(略してFedLaAvg)と呼ばれる単純な分散非線形最適化アルゴリズムを提案する。
我々の理論的解析は、FedLaAvgが$(E1/2/(NT1/2)$の収束率に達し、クライアントの総数に対してサブ線形速度を達成することを示している。
論文 参考訳(メタデータ) (2020-02-18T06:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。