Hierarchical Attention Graph for Scientific Document Summarization in Global and Local Level
- URL: http://arxiv.org/abs/2405.10202v1
- Date: Thu, 16 May 2024 15:46:30 GMT
- Title: Hierarchical Attention Graph for Scientific Document Summarization in Global and Local Level
- Authors: Chenlong Zhao, Xiwen Zhou, Xiaopeng Xie, Yong Zhang,
- Abstract summary: Long input hinders simultaneous modeling of both global high-order relations between sentences and local intra-sentence relations.
We propose HAESum, a novel approach utilizing graph neural networks to model documents based on their hierarchical discourse structure.
We validate our approach on two benchmark datasets, and the experimental results demonstrate the effectiveness of HAESum.
- Score: 3.7651378994837104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific document summarization has been a challenging task due to the long structure of the input text. The long input hinders the simultaneous effective modeling of both global high-order relations between sentences and local intra-sentence relations which is the most critical step in extractive summarization. However, existing methods mostly focus on one type of relation, neglecting the simultaneous effective modeling of both relations, which can lead to insufficient learning of semantic representations. In this paper, we propose HAESum, a novel approach utilizing graph neural networks to locally and globally model documents based on their hierarchical discourse structure. First, intra-sentence relations are learned using a local heterogeneous graph. Subsequently, a novel hypergraph self-attention layer is introduced to further enhance the characterization of high-order inter-sentence relations. We validate our approach on two benchmark datasets, and the experimental results demonstrate the effectiveness of HAESum and the importance of considering hierarchical structures in modeling long scientific documents. Our code will be available at \url{https://github.com/MoLICHENXI/HAESum}
Related papers
- Graph-tree Fusion Model with Bidirectional Information Propagation for Long Document Classification [20.434941308959786]
Long document classification presents challenges due to their extensive content and complex structure.
Existing methods often struggle with token limits and fail to adequately model hierarchical relationships within documents.
Our approach integrates syntax trees for sentence encodings and document graphs for document encodings, which capture fine-grained syntactic relationships and broader document contexts.
arXiv Detail & Related papers (2024-10-03T19:25:01Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
We propose a novel GNN-based sparse structure learning model for inductive document classification.
Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies.
Experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results.
arXiv Detail & Related papers (2021-12-13T02:36:04Z) - Exploiting Global Contextual Information for Document-level Named Entity
Recognition [46.99922251839363]
We propose a model called Global Context enhanced Document-level NER (GCDoc)
At word-level, a document graph is constructed to model a wider range of dependencies between words.
At sentence-level, for appropriately modeling wider context beyond single sentence, we employ a cross-sentence module.
Our model reaches F1 score of 92.22 (93.40 with BERT) on CoNLL 2003 dataset and 88.32 (90.49 with BERT) on Ontonotes 5.0 dataset.
arXiv Detail & Related papers (2021-06-02T01:52:07Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence
Insertion Problem? [66.70154236519186]
Sentence insertion is a delicate but fundamental NLP problem.
Current approaches in sentence ordering, text coherence, and question answering (QA) are neither suitable nor good at solving it.
We propose InsertGNN, a model that represents the problem as a graph and adopts the graph Neural Network (GNN) to learn the connection between sentences.
arXiv Detail & Related papers (2021-03-28T06:50:31Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
This paper proposes a graph neural network (GNN)-based extractive summarization model.
Our model integrates a joint neural topic model (NTM) to discover latent topics, which can provide document-level features for sentence selection.
The experimental results demonstrate that our model achieves substantially state-of-the-art results on CNN/DM and NYT datasets.
arXiv Detail & Related papers (2020-10-13T09:30:04Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
Cross-sentence relations are a crucial step in extractive document summarization.
We present a graph-based neural network for extractive summarization (HeterSumGraph)
We introduce different types of nodes into graph-based neural networks for extractive document summarization.
arXiv Detail & Related papers (2020-04-26T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.