論文の概要: Towards Task-Compatible Compressible Representations
- arxiv url: http://arxiv.org/abs/2405.10244v1
- Date: Thu, 16 May 2024 16:47:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 13:12:38.513892
- Title: Towards Task-Compatible Compressible Representations
- Title(参考訳): タスク対応型圧縮性表現に向けて
- Authors: Anderson de Andrade, Ivan Bajić,
- Abstract要約: マルチタスクで学習可能な圧縮において、あるタスクで学習した表現が別のタスクの速度歪み性能に肯定的な寄与をしない問題について検討する。
学習可能なスケーラブルコーディングでは、この共有表現を学習する際に入力再構成にも報いることで、入力再構成のためのサイド情報の利用が増加した。
我々はCOCO 2017のオブジェクト検出とCityscapesデータセットの深さ推定のために訓練された表現を用いて実験を行い、画像再構成とセマンティックセグメンテーションタスクを支援する。
- 参考スコア(独自算出の注目度): 0.7980273012483663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We identify an issue in multi-task learnable compression, in which a representation learned for one task does not positively contribute to the rate-distortion performance of a different task as much as expected, given the estimated amount of information available in it. We interpret this issue using the predictive $\mathcal{V}$-information framework. In learnable scalable coding, previous work increased the utilization of side-information for input reconstruction by also rewarding input reconstruction when learning this shared representation. We evaluate the impact of this idea in the context of input reconstruction more rigorously and extended it to other computer vision tasks. We perform experiments using representations trained for object detection on COCO 2017 and depth estimation on the Cityscapes dataset, and use them to assist in image reconstruction and semantic segmentation tasks. The results show considerable improvements in the rate-distortion performance of the assisted tasks. Moreover, using the proposed representations, the performance of the base tasks are also improved. Results suggest that the proposed method induces simpler representations that are more compatible with downstream processes.
- Abstract(参考訳): 本研究では,学習可能なマルチタスク圧縮において,あるタスクで学習した表現が,期待したほど異なるタスクの速度歪み性能に寄与しないという問題を特定する。
我々はこの問題を予測的な$\mathcal{V}$-informationフレームワークを使って解釈する。
学習可能なスケーラブルコーディングでは、この共有表現を学習する際に入力再構成にも報いることで、入力再構成のためのサイド情報の利用が増加した。
我々は、入力再構成の文脈におけるこのアイデアの影響をより厳密に評価し、他のコンピュータビジョンタスクに拡張した。
我々はCOCO 2017のオブジェクト検出とCityscapesデータセットの深さ推定のために訓練された表現を用いて実験を行い、画像再構成とセマンティックセグメンテーションタスクを支援する。
その結果, 補足作業の速度歪み性能は有意に向上した。
さらに,提案した表現を用いて,基本タスクの性能も向上する。
提案手法は,下流プロセスとより互換性のあるより単純な表現を導出することを示す。
関連論文リスト
- Unveiling Backbone Effects in CLIP: Exploring Representational Synergies
and Variances [49.631908848868505]
コントラスト言語-画像事前学習(CLIP)は画像表現学習において顕著な手法である。
各種ニューラルアーキテクチャにおけるCLIP性能の違いについて検討する。
我々は、複数のバックボーンからの予測を組み合わせるためのシンプルで効果的なアプローチを提案し、最大6.34%のパフォーマンス向上につながった。
論文 参考訳(メタデータ) (2023-12-22T03:01:41Z) - Revisiting Image Reconstruction for Semi-supervised Semantic
Segmentation [16.27277238968567]
画像再構成を補助課題として利用し、半教師付きセマンティックセグメンテーションフレームワークに組み込むという考え方を再考する。
驚くことに、このような半教師付き学習の古いアイデアは、最先端のセマンティックセグメンテーションアルゴリズムと競合する結果をもたらす。
論文 参考訳(メタデータ) (2023-03-17T06:31:06Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
マルチタスク学習は、目標タスクを補助タスクと協調的に最適化することで、より優れたモデル一般化を約束する。
自己監督型(補助的)タスクと密接な予測(目標)タスクを共同でトレーニングすることで、目標タスクの性能を継続的に向上し、補助タスクのラベル付けの必要性を排除できることが判明した。
論文 参考訳(メタデータ) (2022-10-13T17:59:16Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
視覚、強化学習、NLPにおける最近の研究は、補助的な表現学習の目的が、高価なタスク固有の大量のデータの必要性を減らすことを示している。
本稿では,表現学習アルゴリズムを構築するためのモジュラーフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-16T11:23:42Z) - Robust Representation Learning via Perceptual Similarity Metrics [18.842322467828502]
Contrastive Input Morphing (CIM) はデータの入力空間変換を学習する表現学習フレームワークである。
CIMは他の相互情報に基づく表現学習技術と相補的であることを示す。
論文 参考訳(メタデータ) (2021-06-11T21:45:44Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
教師なしドメイン適応(UDA)設定において,視覚的タスク関係を符号化してモデル性能を向上させる手法を提案する。
本稿では,意味的および深さ的予測のタスク依存性を符号化する新しいクロスタスク関係層(ctrl)を提案する。
さらに、セマンティック擬似ラベルを利用してターゲットドメインを監督する反復自己学習(ISL)トレーニングスキームを提案する。
論文 参考訳(メタデータ) (2021-05-17T13:42:09Z) - Return-Based Contrastive Representation Learning for Reinforcement
Learning [126.7440353288838]
そこで本研究では,学習表現に異なる戻り値を持つ状態-動作ペアを判別させる新しい補助タスクを提案する。
アルゴリズムはatariゲームやdeepmindコントロールスイートの複雑なタスクのベースラインを上回っています。
論文 参考訳(メタデータ) (2021-02-22T13:04:18Z) - Towards Generalising Neural Implicit Representations [15.728196666021665]
我々は、従来のタスクと並んで、両タスクのニューラル表現のトレーニングはより一般的なエンコーディングを生み出すことができると論じている。
提案手法は,タスクごとに高品質な結果をもたらす機能豊富なエンコーディングを学習する。
またセグメンテーションタスクを再構築し、暗黙の表現コンテキストに対するより代表的な課題を創出する。
論文 参考訳(メタデータ) (2021-01-29T17:20:22Z) - Analyzing Visual Representations in Embodied Navigation Tasks [45.35107294831313]
我々は、最近提案されたプロジェクション重み付き正準相関解析(PWCCA)を用いて、異なるタスクを実行することで、同じ環境で学習した視覚的表現の類似度を測定する。
次に、あるタスクで学習した視覚的表現が、別のタスクに効果的に転送できることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-12T19:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。