How Far Are We From AGI: Are LLMs All We Need?
- URL: http://arxiv.org/abs/2405.10313v2
- Date: Sun, 24 Nov 2024 18:44:27 GMT
- Title: How Far Are We From AGI: Are LLMs All We Need?
- Authors: Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, Jiaxuan You,
- Abstract summary: AGI is distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence.
This paper outlines the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions.
To give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains.
- Score: 15.705756259264932
- License:
- Abstract: The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing studies have reviewed specific advancements in AI and proposed potential paths to AGI, such as large language models (LLMs), they fall short of providing a thorough exploration of AGI's definitions, objectives, and developmental trajectories. Unlike previous survey papers, this work goes beyond summarizing LLMs by addressing key questions about our progress toward AGI and outlining the strategies essential for its realization through comprehensive analysis, in-depth discussions, and novel insights. We start by articulating the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions. As the realization of AGI requires more advanced capabilities and adherence to stringent constraints, we further discuss necessary AGI alignment technologies to harmonize these factors. Notably, we emphasize the importance of approaching AGI responsibly by first defining the key levels of AGI progression, followed by the evaluation framework that situates the status quo, and finally giving our roadmap of how to reach the pinnacle of AGI. Moreover, to give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains. In sum, serving as a pioneering exploration into the current state and future trajectory of AGI, this paper aims to foster a collective comprehension and catalyze broader public discussions among researchers and practitioners on AGI.
Related papers
- Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial Intelligence (AGI)
MLMs andWMs have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities.
In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI.
arXiv Detail & Related papers (2024-07-09T14:14:47Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Concepts is All You Need: A More Direct Path to AGI [0.0]
Little progress has been made toward AGI (Artificial General Intelligence) since the term was coined some 20 years ago.
Here we outline an architecture and development plan, together with some preliminary results, that offers a much more direct path to full Human-Level AI (HLAI)/ AGI.
arXiv Detail & Related papers (2023-09-04T14:14:41Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
This position paper reviews artificial general intelligence (AGI)'s key concepts, capabilities, scope, and potential within future education.
It highlights that AGI can significantly improve intelligent tutoring systems, educational assessment, and evaluation procedures.
The paper emphasizes that AGI's capabilities extend to understanding human emotions and social interactions.
arXiv Detail & Related papers (2023-04-24T22:31:59Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.