Toon3D: Seeing Cartoons from New Perspectives
- URL: http://arxiv.org/abs/2405.10320v3
- Date: Tue, 10 Dec 2024 17:23:09 GMT
- Title: Toon3D: Seeing Cartoons from New Perspectives
- Authors: Ethan Weber, Riley Peterlinz, Rohan Mathur, Frederik Warburg, Alexei A. Efros, Angjoo Kanazawa,
- Abstract summary: We recover the underlying 3D structure from images of cartoons and anime depicting the same scene.
Our key insight is to deform the input images while recovering camera poses and scene geometry.
Our recovered point clouds can be plugged into novel-view synthesis methods to experience cartoons from viewpoints never drawn before.
- Score: 52.85312338932685
- License:
- Abstract: We recover the underlying 3D structure from images of cartoons and anime depicting the same scene. This is an interesting problem domain because images in creative media are often depicted without explicit geometric consistency for storytelling and creative expression-they are only 3D in a qualitative sense. While humans can easily perceive the underlying 3D scene from these images, existing Structure-from-Motion (SfM) methods that assume 3D consistency fail catastrophically. We present Toon3D for reconstructing geometrically inconsistent images. Our key insight is to deform the input images while recovering camera poses and scene geometry, effectively explaining away geometrical inconsistencies to achieve consistency. This process is guided by the structure inferred from monocular depth predictions. We curate a dataset with multi-view imagery from cartoons and anime that we annotate with reliable sparse correspondences using our user-friendly annotation tool. Our recovered point clouds can be plugged into novel-view synthesis methods to experience cartoons from viewpoints never drawn before. We evaluate against classical and recent learning-based SfM methods, where Toon3D is able to obtain more reliable camera poses and scene geometry.
Related papers
- DualPM: Dual Posed-Canonical Point Maps for 3D Shape and Pose Reconstruction [67.13370009386635]
We introduce the Dual Point Maps (DualPM), where a pair of point maps is extracted from the same image, one associating pixels to their 3D locations on the object, and the other to a canonical version of the object at rest pose.
We show that 3D reconstruction and 3D pose estimation reduce to the prediction of the DualPMs.
arXiv Detail & Related papers (2024-12-05T18:59:48Z) - Generating 3D-Consistent Videos from Unposed Internet Photos [68.944029293283]
We train a scalable, 3D-aware video model without any 3D annotations such as camera parameters.
Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
arXiv Detail & Related papers (2024-11-20T18:58:31Z) - Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting [75.7154104065613]
We introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process.
We also introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry.
arXiv Detail & Related papers (2024-04-30T17:59:40Z) - The More You See in 2D, the More You Perceive in 3D [32.578628729549145]
SAP3D is a system for 3D reconstruction and novel view synthesis from an arbitrary number of unposed images.
We show that as the number of input images increases, the performance of our approach improves.
arXiv Detail & Related papers (2024-04-04T17:59:40Z) - Neural 3D Scene Reconstruction from Multiple 2D Images without 3D
Supervision [41.20504333318276]
We propose a novel neural reconstruction method that reconstructs scenes using sparse depth under the plane constraints without 3D supervision.
We introduce a signed distance function field, a color field, and a probability field to represent a scene.
We optimize these fields to reconstruct the scene by using differentiable ray marching with accessible 2D images as supervision.
arXiv Detail & Related papers (2023-06-30T13:30:48Z) - Style Agnostic 3D Reconstruction via Adversarial Style Transfer [23.304453155586312]
Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision.
We propose an approach that enables a differentiable-based learning of 3D objects from images with backgrounds.
arXiv Detail & Related papers (2021-10-20T21:24:44Z) - Online Adaptation for Consistent Mesh Reconstruction in the Wild [147.22708151409765]
We pose video-based reconstruction as a self-supervised online adaptation problem applied to any incoming test video.
We demonstrate that our algorithm recovers temporally consistent and reliable 3D structures from videos of non-rigid objects including those of animals captured in the wild.
arXiv Detail & Related papers (2020-12-06T07:22:27Z) - From Image Collections to Point Clouds with Self-supervised Shape and
Pose Networks [53.71440550507745]
Reconstructing 3D models from 2D images is one of the fundamental problems in computer vision.
We propose a deep learning technique for 3D object reconstruction from a single image.
We learn both 3D point cloud reconstruction and pose estimation networks in a self-supervised manner.
arXiv Detail & Related papers (2020-05-05T04:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.