論文の概要: g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
- arxiv url: http://arxiv.org/abs/2411.17030v1
- Date: Tue, 26 Nov 2024 01:54:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:26.168857
- Title: g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
- Title(参考訳): g3D-LF: エンボディタスクのための一般化可能な3D言語機能フィールド
- Authors: Zihan Wang, Gim Hee Lee,
- Abstract要約: Generalizable 3D-Language Feature Fields (g3D-LF)は、大規模な3D言語データセットで事前訓練された3D表現モデルである。
- 参考スコア(独自算出の注目度): 62.74304008688472
- License:
- Abstract: We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
- Abstract(参考訳): 本稿では,大規模3次元言語データセットに事前学習した3次元表現モデルであるGeneralizable 3D-Language Feature Fields (g3D-LF)を紹介する。
我々のg3D-LFプロセスは、エージェントからRGB-D画像を作成し、次のような特徴フィールドをエンコードする。
1) 3Dシーンにおける任意の位置からの新たな視点表示予測
2) エージェントを中心としたBEVマップの生成
3) 上記の表現の中で,多粒度言語を用いたクエリターゲット。
我々の表現は目に見えない環境に一般化することができ、リアルタイムな構築と動的更新を可能にします。
サンプル線に沿った潜在特徴のボリュームレンダリングと,マルチスケールエンコーダによる意味的・空間的関係の統合により,我々のg3D-LFは,多段階のコントラスト学習を通じて,多粒度言語に整合した異なるスケールと視点で表現を生成する。
さらに,機能フィールドの表現を言語に合わせるために,大規模3D言語データセットを用意した。
パノラマとモノクラー設定、ゼロショットオブジェクトナビゲーション、およびSituated Question Answeringタスクの下での視覚・言語ナビゲーションに関する広範な実験は、具体化タスクにおけるg3D-LFの重要な利点と有効性を強調している。
関連論文リスト
- ViGiL3D: A Linguistically Diverse Dataset for 3D Visual Grounding [9.289977174410824]
3Dビジュアルグラウンドティングは、自然言語テキストによって参照される3Dシーンでエンティティをローカライズする。
多様な言語パターンに対して視覚的接地手法を評価するための診断データセットである3D (ViGiL3D) の視覚的接地について紹介する。
論文 参考訳(メタデータ) (2025-01-02T17:20:41Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
そこで我々は,Grounded 3D-LLMを提案する。
このモデルは、3Dシーンを参照するために特別な名詞句としてシーン参照トークンを使用する。
タスクごとの指示追従テンプレートは、3D視覚タスクを言語形式に翻訳する際の自然と多様性を保証するために使用される。
論文 参考訳(メタデータ) (2024-05-16T18:03:41Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
視覚言語ナビゲーション(VLN)は、視覚的な観察と自然言語の指示に基づいて、エージェントが3D環境をナビゲートする必要がある。
本研究では,物理世界を3次元構造細胞にボクセル化するボリューム環境表現(VER)を提案する。
VERは3D占有率、3D部屋レイアウト、および3Dバウンディングボックスを共同で予測する。
論文 参考訳(メタデータ) (2024-03-21T06:14:46Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
オープンワールドのインスタンスレベルのシーン理解は、アノテーション付きデータセットに存在しない未知のオブジェクトカテゴリを特定し、認識することを目的としている。
モデルは新しい3Dオブジェクトをローカライズし、それらのセマンティックなカテゴリを推論する必要があるため、この課題は難しい。
本稿では,3Dシーンのキャプションを生成するために,画像テキストペアからの広範な知識を符号化する,事前学習型視覚言語基盤モデルを提案する。
論文 参考訳(メタデータ) (2023-08-01T07:50:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
一般的な言語知識と視覚概念を2次元画像から3次元シーン理解に適用するためのトレーニングモデルは、研究者が最近探求を始めたばかりの有望な方向である。
そこで本研究では,モデルによる3次元シーンポイントクラウド表現の学習を可能にする,新しい3次元事前学習手法であるMulti-CLIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T11:08:53Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
視覚空間記述(VSD)は、画像内の対象物の空間的関係を記述するテキストを生成することを目的としている。
外部の3Dシーン抽出器を用いて,入力画像の3Dオブジェクトとシーン特徴を抽出する。
対象物の中心となる3次元空間シーングラフ(Go3D-S2G)を構築し,対象物の空間意味を総合的な3次元シーン内にモデル化する。
論文 参考訳(メタデータ) (2023-05-19T15:53:56Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
本稿では,自然言語記述とオンラインキャプチャによるマルチモーダル視覚データに基づく大規模動的シーンにおける3次元視覚接地作業について紹介する。
本研究では,画像中のリッチな外観情報,位置,および点雲中の幾何学的手がかりをフル活用して,WildReferという新しい手法を提案する。
われわれのデータセットは、野生の3Dビジュアルグラウンドの研究にとって重要なものであり、自動運転とサービスロボットの開発を促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-04-12T06:48:26Z) - Self-supervised 3D Semantic Representation Learning for
Vision-and-Language Navigation [30.429893959096752]
ボクセルレベルの3Dセマンティック再構築を3Dセマンティック表現にエンコードする新しいトレーニングフレームワークを開発した。
LSTMに基づくナビゲーションモデルを構築し,提案した3Dセマンティック表現とBERT言語特徴を視覚言語ペア上で学習する。
実験の結果、提案手法は、R2Rデータセットの未確認分割とテスト未確認の検証において、成功率68%と66%を達成することがわかった。
論文 参考訳(メタデータ) (2022-01-26T07:43:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。