Efficient model predictive control for nonlinear systems modelled by deep neural networks
- URL: http://arxiv.org/abs/2405.10372v1
- Date: Thu, 16 May 2024 18:05:18 GMT
- Title: Efficient model predictive control for nonlinear systems modelled by deep neural networks
- Authors: Jianglin Lan,
- Abstract summary: This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by deep neural networks (NNs)
Since the NN output contains a high-order complex nonlinearity of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control.
- Score: 6.5268245109828005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by deep neural networks (NNs), under input and state constraints. Since the NN output contains a high-order complex nonlinearity of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control. This paper proposes two types of methods for solving the MPC problem: the mixed integer programming (MIP) method which produces an exact solution to the nonlinear MPC, and linear relaxation (LR) methods which generally give suboptimal solutions but are much computationally cheaper. Extensive numerical simulation for an inverted pendulum system modelled by ReLU NNs of various sizes is used to demonstrate and compare performance of the MIP and LR methods.
Related papers
- Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve optimal control problems in mixed-logical dynamical systems.
The proposed method significantly reduces the online computation time of the MPC approach and that it generates policies with small optimality gaps and high feasibility rates.
arXiv Detail & Related papers (2024-09-17T15:17:16Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models [6.031205224945912]
A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data.
This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions.
arXiv Detail & Related papers (2024-04-18T11:29:43Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Approximate non-linear model predictive control with safety-augmented neural networks [7.670727843779155]
This paper studies approximations of model predictive control (MPC) controllers via neural networks (NNs) to achieve fast online evaluation.
We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies.
arXiv Detail & Related papers (2023-04-19T11:27:06Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Training Recurrent Neural Networks by Sequential Least Squares and the
Alternating Direction Method of Multipliers [0.20305676256390928]
We propose the use of convex and twice-differentiable loss and regularization terms for determining optimal hidden network parameters.
We combine sequential least squares with alternating direction multipliers.
The performance of the algorithm is tested in a nonlinear system identification benchmark.
arXiv Detail & Related papers (2021-12-31T08:43:04Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.