MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models
- URL: http://arxiv.org/abs/2404.12097v1
- Date: Thu, 18 Apr 2024 11:29:43 GMT
- Title: MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models
- Authors: Jiaqi Yan, Ankush Chakrabarty, Alisa Rupenyan, John Lygeros,
- Abstract summary: A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data.
This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions.
- Score: 6.031205224945912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data, and a state-space component captures the temporal relationship. This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions. Our objective is to design the optimal controller using limited data from the \textit{target system} (the system of interest). To this end, we employ an implicit model-agnostic meta-learning (iMAML) framework that leverages information from \textit{source systems} (systems that share similarities with the target system) to expedite training in the target system and enhance its control performance. The framework consists of two phases: the (offine) meta-training phase learns a aggregated NSSM using data from source systems, and the (online) meta-inference phase quickly adapts this aggregated model to the target system using only a few data points and few online training iterations, based on local loss function gradients. The iMAML algorithm exploits the implicit function theorem to exactly compute the gradient during training, without relying on the entire optimization path. By focusing solely on the optimal solution, rather than the path, we can meta-train with less storage complexity and fewer approximations than other contemporary meta-learning algorithms. We demonstrate through numerical examples that our proposed method can yield accurate predictive models by adaptation, resulting in a downstream MPC that outperforms several baselines.
Related papers
- Recursive Gaussian Process State Space Model [4.572915072234487]
We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.
Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.
Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
arXiv Detail & Related papers (2024-11-22T02:22:59Z) - Efficient model predictive control for nonlinear systems modelled by deep neural networks [6.5268245109828005]
This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by deep neural networks (NNs)
Since the NN output contains a high-order complex nonlinearity of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control.
arXiv Detail & Related papers (2024-05-16T18:05:18Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Optimal Exploration for Model-Based RL in Nonlinear Systems [14.540210895533937]
Learning to control unknown nonlinear dynamical systems is a fundamental problem in reinforcement learning and control theory.
We develop an algorithm able to efficiently explore the system to reduce uncertainty in a task-dependent metric.
Our algorithm relies on a general reduction from policy optimization to optimal experiment design in arbitrary systems, and may be of independent interest.
arXiv Detail & Related papers (2023-06-15T15:47:50Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
We propose the use of model-agnostic meta-learning for constructing deep encoder network-based SSMs.
We demonstrate that meta-learning can result in more accurate neural SSM models than supervised- or transfer-learning.
arXiv Detail & Related papers (2022-11-14T22:03:35Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
We present Neural-iLQR, a learning-aided shooting method over the unconstrained control space.
It is shown to outperform the conventional iLQR significantly in the presence of inaccuracies in system models.
arXiv Detail & Related papers (2020-11-21T07:17:28Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.