論文の概要: Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
- arxiv url: http://arxiv.org/abs/2405.10376v1
- Date: Thu, 16 May 2024 18:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:42:52.322739
- Title: Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
- Title(参考訳): ディーリング・ダウト:フェデレートラーニング・サーベイと分類学によるグラディエント・インバージョン・アタックの脅威モデル
- Authors: Yichuan Shi, Olivera Kotevska, Viktor Reshniak, Abhishek Singh, Ramesh Raskar,
- Abstract要約: フェデレートラーニング(FL)は、機械学習トレーニングを分散したプライバシ保護のための主要なパラダイムとして登場した。
近年のGIA(グラデーション・インバージョン・アタック)の研究では、FLの勾配更新がプライベートトレーニングサンプルに関する情報を漏洩させることが示されている。
本稿では、FL脅威モデル、特に悪意のあるサーバやクライアントに焦点を当てたGIAに関する調査と新たな分類について述べる。
- 参考スコア(独自算出の注目度): 10.962424750173332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a leading paradigm for decentralized, privacy preserving machine learning training. However, recent research on gradient inversion attacks (GIAs) have shown that gradient updates in FL can leak information on private training samples. While existing surveys on GIAs have focused on the honest-but-curious server threat model, there is a dearth of research categorizing attacks under the realistic and far more privacy-infringing cases of malicious servers and clients. In this paper, we present a survey and novel taxonomy of GIAs that emphasize FL threat models, particularly that of malicious servers and clients. We first formally define GIAs and contrast conventional attacks with the malicious attacker. We then summarize existing honest-but-curious attack strategies, corresponding defenses, and evaluation metrics. Critically, we dive into attacks with malicious servers and clients to highlight how they break existing FL defenses, focusing specifically on reconstruction methods, target model architectures, target data, and evaluation metrics. Lastly, we discuss open problems and future research directions.
- Abstract(参考訳): フェデレートラーニング(FL)は、機械学習トレーニングを分散したプライバシ保護のための主要なパラダイムとして登場した。
しかし,近年のGIA(グラデーション・インバージョン・アタック)の研究では,FLの勾配更新がプライベートトレーニングサンプルに関する情報を漏洩させることが示されている。
GIAに関する既存の調査は、誠実だが正確なサーバー脅威モデルに焦点を当てているが、悪意のあるサーバやクライアントのより現実的ではるかにプライバシーを侵害するケースの下で、攻撃を分類する研究が相次いだ。
本稿では、FL脅威モデル、特に悪意のあるサーバやクライアントに焦点を当てたGIAに関する調査と新しい分類法を提案する。
まず、GIAを正式に定義し、従来の攻撃と悪意のある攻撃を対比する。
次に、既存の誠実だが正確な攻撃戦略、対応する防御策、評価指標を要約する。
批判的に言えば、悪意のあるサーバやクライアントによる攻撃を調べて、リコンストラクションメソッド、ターゲットモデルアーキテクチャ、ターゲットデータ、評価メトリクスに特化して、既存のFLディフェンスを破る方法を強調します。
最後に,オープンな問題と今後の研究方向性について論じる。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Privacy Leakage on DNNs: A Survey of Model Inversion Attacks and Defenses [40.77270226912783]
Model Inversion(MI)攻撃は、トレーニングされたモデルへのアクセスを悪用することで、トレーニングデータセットに関するプライベート情報を開示する。
この分野の急速な進歩にもかかわらず、我々は既存のMI攻撃と防衛の包括的かつ体系的な概要を欠いている。
我々は,近年のDeep Neural Networks(DNN)に対する攻撃と防御を,複数のモダリティと学習タスクで詳細に分析し,比較する。
論文 参考訳(メタデータ) (2024-02-06T14:06:23Z) - Data and Model Poisoning Backdoor Attacks on Wireless Federated
Learning, and the Defense Mechanisms: A Comprehensive Survey [28.88186038735176]
無線通信ネットワーク(WCN)への応用については,フェデレートラーニング(FL)がますます検討されている。
一般に、WCNの非独立で同一に分布する(非IID)データは、堅牢性に関する懸念を提起する。
この調査は、最新のバックドア攻撃と防御メカニズムの包括的なレビューを提供する。
論文 参考訳(メタデータ) (2023-12-14T05:52:29Z) - A Survey on Vulnerability of Federated Learning: A Learning Algorithm
Perspective [8.941193384980147]
FLシステムの学習プロセスを対象とした脅威モデルに焦点を当てる。
防衛戦略は、特定のメトリクスを使用して悪意のあるクライアントを除外することから進化してきた。
最近の取り組みは、ローカルモデルの最小限の重みを、防御措置をバイパスするために微妙に変更している。
論文 参考訳(メタデータ) (2023-11-27T18:32:08Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。