Track Boosting and Synthetic Data Aided Drone Detection
- URL: http://arxiv.org/abs/2111.12389v1
- Date: Wed, 24 Nov 2021 10:16:27 GMT
- Title: Track Boosting and Synthetic Data Aided Drone Detection
- Authors: Fatih Cagatay Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, Sinan Onur
Altinuc
- Abstract summary: Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data.
Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the usage of drones increases with lowered costs and improved drone
technology, drone detection emerges as a vital object detection task. However,
detecting distant drones under unfavorable conditions, namely weak contrast,
long-range, low visibility, requires effective algorithms. Our method
approaches the drone detection problem by fine-tuning a YOLOv5 model with real
and synthetically generated data using a Kalman-based object tracker to boost
detection confidence. Our results indicate that augmenting the real data with
an optimal subset of synthetic data can increase the performance. Moreover,
temporal information gathered by object tracking methods can increase
performance further.
Related papers
- DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
Drone detection is a challenging object detection task where visibility conditions and quality of the images may be unfavorable.
Our work improves on the previous approach by combining several improvements.
The proposed technique won 1st Place in the Drone vs. Bird Challenge.
arXiv Detail & Related papers (2024-06-30T20:49:56Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
This paper presents an approach for tracking surrounding traffic participants with a classical tracking algorithm.
Learning based object detectors have been shown to work adequately on lidar and camera data, while learning based object detectors using standard radar data input have proven to be inferior.
With the improvements to radar sensor technology in the form of imaging radars, the object detection performance on radar was greatly improved but is still limited compared to lidar sensors due to the sparsity of the radar point cloud.
The tracking algorithm must overcome the limited detection quality while generating consistent tracks.
arXiv Detail & Related papers (2024-06-03T05:46:23Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
arXiv Detail & Related papers (2024-05-16T18:56:46Z) - C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks [23.133250476580038]
A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations.
detecting drones presents unique challenges, including small object sizes, distortion, and real-time processing requirements.
We propose a novel coarse-to-fine detection strategy based on vision transformers.
arXiv Detail & Related papers (2024-04-30T05:51:21Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause
Detection and Identification [6.585891825257162]
We propose novel architectures to detect and classify drone mis-operations based on sensor data.
We validate the proposed deep-learning architectures via simulations and experiments on a real drone.
Our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations.
arXiv Detail & Related papers (2020-04-03T22:46:34Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.