Drone Detection and Tracking with YOLO and a Rule-based Method
- URL: http://arxiv.org/abs/2502.05292v1
- Date: Fri, 07 Feb 2025 19:53:10 GMT
- Title: Drone Detection and Tracking with YOLO and a Rule-based Method
- Authors: Purbaditya Bhattacharya, Patrick Nowak,
- Abstract summary: An increased volume of drone activity in public spaces requires regulatory actions for purposes of privacy protection and safety.
detection tasks are usually automated and performed by deep learning models which are trained on annotated image datasets.
This paper builds on a previous work and extends an already published open source dataset.
Since the detection models are based on a single image input, a simple cross-correlation based tracker is used to reduce detection drops and improve tracking performance in videos.
- Score: 0.0
- License:
- Abstract: Drones or unmanned aerial vehicles are traditionally used for military missions, warfare, and espionage. However, the usage of drones has significantly increased due to multiple industrial applications involving security and inspection, transportation, research purposes, and recreational drone flying. Such an increased volume of drone activity in public spaces requires regulatory actions for purposes of privacy protection and safety. Hence, detection of illegal drone activities such as boundary encroachment becomes a necessity. Such detection tasks are usually automated and performed by deep learning models which are trained on annotated image datasets. This paper builds on a previous work and extends an already published open source dataset. A description and analysis of the entire dataset is provided. The dataset is used to train the YOLOv7 deep learning model and some of its minor variants and the results are provided. Since the detection models are based on a single image input, a simple cross-correlation based tracker is used to reduce detection drops and improve tracking performance in videos. Finally, the entire drone detection system is summarized.
Related papers
- Cooperative Search and Track of Rogue Drones using Multiagent Reinforcement Learning [8.775925011558995]
This work considers the problem of intercepting rogue drones targeting sensitive critical infrastructure facilities.
A holistic system that can reliably detect, track, and neutralize rogue drones is proposed.
arXiv Detail & Related papers (2025-01-07T16:22:51Z) - DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
Drone detection is a challenging object detection task where visibility conditions and quality of the images may be unfavorable.
Our work improves on the previous approach by combining several improvements.
The proposed technique won 1st Place in the Drone vs. Bird Challenge.
arXiv Detail & Related papers (2024-06-30T20:49:56Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
arXiv Detail & Related papers (2024-05-16T18:56:46Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Small Object Detection using Deep Learning [0.28675177318965034]
The proposed system consists of a custom deep learning model Tiny YOLOv3, one of the flavors of very fast object detection model You Look Only Once (YOLO) is built and used for detection.
The proposed architecture has shown significantly better performance as compared to the previous YOLO version.
arXiv Detail & Related papers (2022-01-10T09:58:25Z) - Track Boosting and Synthetic Data Aided Drone Detection [0.0]
Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data.
Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance.
arXiv Detail & Related papers (2021-11-24T10:16:27Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.