論文の概要: A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity
- arxiv url: http://arxiv.org/abs/2405.10584v1
- Date: Fri, 17 May 2024 07:18:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 16:42:27.421649
- Title: A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity
- Title(参考訳): 人気が高まるオンラインフォーラムの投資家感を考慮した株価予測のためのハイブリッドディープラーニングフレームワーク
- Authors: Huiyu Li, Junhua Hu,
- Abstract要約: 最先端のディープラーニング技術を用いて、オンラインフォーラムから抽出した投資家の感情に基づく株価予測が可能になった。
株価予測のための新しいハイブリッドディープラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.5893124686141782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock price prediction has always been a difficult task for forecasters. Using cutting-edge deep learning techniques, stock price prediction based on investor sentiment extracted from online forums has become feasible. We propose a novel hybrid deep learning framework for predicting stock prices. The framework leverages the XLNET model to analyze the sentiment conveyed in user posts on online forums, combines these sentiments with the post popularity factor to compute daily group sentiments, and integrates this information with stock technical indicators into an improved BiLSTM-highway model for stock price prediction. Through a series of comparative experiments involving four stocks on the Chinese stock market, it is demonstrated that the hybrid framework effectively predicts stock prices. This study reveals the necessity of analyzing investors' textual views for stock price prediction.
- Abstract(参考訳): 株価の予測は常に予測者にとって難しい課題だった。
最先端のディープラーニング技術を用いて、オンラインフォーラムから抽出した投資家の感情に基づく株価予測が可能になった。
株価予測のための新しいハイブリッドディープラーニングフレームワークを提案する。
このフレームワークは、XLNETモデルを利用してオンラインフォーラム上のユーザー投稿に伝達される感情を分析し、これらの感情をポスト人気要因と組み合わせて、日々のグループの感情を計算し、この情報をストック技術指標と統合し、株価予測のために改良されたBiLSTMハイウェイモデルに統合する。
中国株式市場の4銘柄に関する一連の比較実験を通じて、このハイブリッド・フレームワークが株価を効果的に予測できることが示されている。
本研究は、株価予測のための投資家のテキストビューの分析の必要性を明らかにする。
関連論文リスト
- Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
この研究は、既存の株価予測手法に関する文献に基づいており、機械学習とディープラーニングアプローチへのシフトを強調している。
LSTMモデルでは、NSE、インドに上場している18のセクターで180銘柄の歴史的株価を用いて、将来の価格を予測する。
その結果,株価を正確に予測し,投資決定を下す上でLSTMモデルの有効性が示された。
論文 参考訳(メタデータ) (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models [57.70351255180495]
当社はChatGPTを使用して、各見出しが企業の株価に対して良いか悪いか、中立かを評価する。
また,ChatGPTは従来の感情分析法よりも優れていた。
ChatGPT-4に基づくロングショート戦略はシャープ比が最も高い。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Deep learning based Chinese text sentiment mining and stock market
correlation research [6.000327333763521]
我々は、ストックバーなどの金融フォーラムデータをクロールして、感情分析のためのディープラーニングモデルと組み合わせる方法について検討する。
本稿では、BERTモデルを用いて、財務コーパスに対するトレーニングを行い、SZSE成分指数を予測する。
得られた感情特徴は、株式市場の変動を反映し、予測精度を効果的に改善するのに役立つだろう。
論文 参考訳(メタデータ) (2022-05-10T08:35:33Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
本稿では,3つのストック予測犠牲者モデルを騙すために,様々な攻撃構成を試行する。
以上の結果から,提案手法が一貫した成功率を達成し,取引シミュレーションにおいて大きな損失をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-01T05:12:22Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
近年,Webから抽出したストック概念を用いて共有情報をマイニングし,予測結果を改善する手法が提案されている。
これまでの研究では、ストックとコンセプトのつながりは定常的であり、ストックとコンセプトのダイナミックな関連性を無視していた。
本稿では,事前定義された概念と隠れた概念から,概念指向の共有情報を適切にマイニングできる新しいストックトレンド予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-26T14:04:04Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Stock price prediction using BERT and GAN [0.0]
本稿では、株価を予測するための最先端の手法の集合体を提案する。
これはGoogle for Natural Language Processing (NLP)によって事前訓練されたトランスフォーマーモデルであるBERTのバージョンを使用している。
その後、GAN(Generative Adversarial Network)は、Apple Inc.の株価を、技術指標、さまざまな国の株価指数、いくつかの商品、そして歴史的価格と評価スコアを用いて予測する。
論文 参考訳(メタデータ) (2021-07-18T18:31:43Z) - A Novel Deep Reinforcement Learning Based Stock Direction Prediction
using Knowledge Graph and Community Aware Sentiments [0.0]
提案手法は,市場予測タスクにおいて顕著な結果をもたらす。
このモデルの有効性を示すために、イスタンブール証券取引所のGaranti Bank(GARAN)、Akbank(AKBNK)、T'urkiye.Ics Bankasi(ISCTR)の株がケーススタディとして使用されている。
論文 参考訳(メタデータ) (2021-07-02T09:39:41Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Towards Earnings Call and Stock Price Movement [7.196468151661785]
本稿では,ディープラーニングフレームワークを用いて,その言語を転写文でモデル化することを提案する。
提案モデルが従来の機械学習ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-23T20:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。