論文の概要: Sample-Efficient Constrained Reinforcement Learning with General Parameterization
- arxiv url: http://arxiv.org/abs/2405.10624v3
- Date: Thu, 31 Oct 2024 05:24:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:49.873677
- Title: Sample-Efficient Constrained Reinforcement Learning with General Parameterization
- Title(参考訳): 一般パラメータ化を用いたサンプル効率の制約付き強化学習
- Authors: Washim Uddin Mondal, Vaneet Aggarwal,
- Abstract要約: エージェントの目標は、無限の地平線上で期待される割引報酬の和を最大化することである。
我々は,世界最適性ギャップを$epsilon$で保証し,制約違反を$epsilon$で保証するPrimal-Dual Accelerated Natural Policy Gradient (PD-ANPG)アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 35.22742439337603
- License:
- Abstract: We consider a constrained Markov Decision Problem (CMDP) where the goal of an agent is to maximize the expected discounted sum of rewards over an infinite horizon while ensuring that the expected discounted sum of costs exceeds a certain threshold. Building on the idea of momentum-based acceleration, we develop the Primal-Dual Accelerated Natural Policy Gradient (PD-ANPG) algorithm that ensures an $\epsilon$ global optimality gap and $\epsilon$ constraint violation with $\tilde{\mathcal{O}}((1-\gamma)^{-7}\epsilon^{-2})$ sample complexity for general parameterized policies where $\gamma$ denotes the discount factor. This improves the state-of-the-art sample complexity in general parameterized CMDPs by a factor of $\mathcal{O}((1-\gamma)^{-1}\epsilon^{-2})$ and achieves the theoretical lower bound in $\epsilon^{-1}$.
- Abstract(参考訳): エージェントの目標は、期待されるコストの割引金額が一定の閾値を超えることを保証しつつ、無限の地平線上での報酬の割引金額を最大化することである。
運動量ベースの加速度の概念に基づいて、$\epsilon$大域的最適性ギャップと$\epsilon$制約違反を$\tilde{\mathcal{O}}((1-\gamma)^{-7}\epsilon^{-2} で保証するプリマル・デュアル・アクセラレーション・ナチュラル・ポリシー・グラディエント(PD-ANPG)アルゴリズムを開発する。
これにより、一般パラメータ化CMDPにおける最先端サンプル複雑性を$\mathcal{O}((1-\gamma)^{-1}\epsilon^{-2})$で改善し、$\epsilon^{-1}$の理論的下界を達成する。
関連論文リスト
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Improved Sample Complexity Analysis of Natural Policy Gradient Algorithm
with General Parameterization for Infinite Horizon Discounted Reward Markov
Decision Processes [41.61653528766776]
本稿では, 自然政策勾配を求めるために, 加速勾配降下過程を利用する自然促進政策勾配(PGAN)アルゴリズムを提案する。
繰り返しは$mathcalO(epsilon-2)$サンプル複雑性と$mathcalO(epsilon-1)$複雑さを達成する。
Hessian-free および IS-free アルゴリズムのクラスでは、ANPG は $mathcalO(epsilon-frac12)$ の係数で最もよく知られたサンプルの複雑さを破り、それらの状態と同時に一致する。
論文 参考訳(メタデータ) (2023-10-18T03:00:15Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm [42.83837408373223]
連続状態-作用空間におけるマルコフ決定過程(CMDP)の問題点を考察する。
本稿では,ゼロ制約違反を実現するために,新しい保守的自然ポリシーグラディエント・プライマル・ダイアルアルゴリズム(C-NPG-PD)を提案する。
論文 参考訳(メタデータ) (2022-06-12T22:31:43Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
我々は、無限の地平線における政策最適化、$gamma$-discounted constrained Markov decision process (CMDP)について研究する。
我々の目標は、小さな制約違反で大きな期待された報酬を達成する政策を返却することである。
本稿では,任意のアルゴリズムに対して,報酬の準最適性と制約違反を拘束できる汎用的原始双対フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-11T15:08:09Z) - Fast Global Convergence of Policy Optimization for Constrained MDPs [17.825031573375725]
勾配法は最適性ギャップと制約違反の両方に対して$mathcalO(log(T)/T)$大域収束率が得られることを示す。
スレーターの条件が満たされ、事前条件が知られているとき、十分大きなT$に対してゼロ制約違反がさらに保証される。
論文 参考訳(メタデータ) (2021-10-31T17:46:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
制約付きマルコフ決定過程(CMDP)を用いた安全強化学習(SRL)問題について検討する。
本稿では,関数近似設定において,安全な探索を行うCMDPの効率の良いオンラインポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-01T17:47:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。