A Large-scale Multi Domain Leukemia Dataset for the White Blood Cells Detection with Morphological Attributes for Explainability
- URL: http://arxiv.org/abs/2405.10803v1
- Date: Fri, 17 May 2024 14:20:02 GMT
- Title: A Large-scale Multi Domain Leukemia Dataset for the White Blood Cells Detection with Morphological Attributes for Explainability
- Authors: Abdul Rehman, Talha Meraj, Aiman Mahmood Minhas, Ayisha Imran, Mohsen Ali, Waqas Sultani,
- Abstract summary: Leukemia prognosis is challenging without morphological information of White Blood Cells (WBC)
Deep Learning based methods can be employed to assist hematologists.
We have acquired a realistic, generalized, and large dataset.
- Score: 7.6197612404154285
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Earlier diagnosis of Leukemia can save thousands of lives annually. The prognosis of leukemia is challenging without the morphological information of White Blood Cells (WBC) and relies on the accessibility of expensive microscopes and the availability of hematologists to analyze Peripheral Blood Samples (PBS). Deep Learning based methods can be employed to assist hematologists. However, these algorithms require a large amount of labeled data, which is not readily available. To overcome this limitation, we have acquired a realistic, generalized, and large dataset. To collect this comprehensive dataset for real-world applications, two microscopes from two different cost spectrums (high-cost HCM and low-cost LCM) are used for dataset capturing at three magnifications (100x, 40x, 10x) through different sensors (high-end camera for HCM, middle-level camera for LCM and mobile-phone camera for both). The high-sensor camera is 47 times more expensive than the middle-level camera and HCM is 17 times more expensive than LCM. In this collection, using HCM at high resolution (100x), experienced hematologists annotated 10.3k WBC types (14) and artifacts, having 55k morphological labels (Cell Size, Nuclear Chromatin, Nuclear Shape, etc.) from 2.4k images of several PBS leukemia patients. Later on, these annotations are transferred to other 2 magnifications of HCM, and 3 magnifications of LCM, and on each camera captured images. Along with the LeukemiaAttri dataset, we provide baselines over multiple object detectors and Unsupervised Domain Adaptation (UDA) strategies, along with morphological information-based attribute prediction. The dataset will be publicly available after publication to facilitate the research in this direction.
Related papers
- Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset [44.948939549346676]
Leukemia is 10th most frequently diagnosed cancer and one of the leading causes of cancer related deaths worldwide.
Despite deep learning advances in medical imaging, leukemia analysis lacks a large, diverse multi-task dataset.
We present a large scale WBC dataset and novel methods for detecting WBC with their attributes.
arXiv Detail & Related papers (2025-04-03T14:04:02Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM)
Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images.
These methods need annotated images that show cells affected by malaria parasites and their life stages.
Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM)
arXiv Detail & Related papers (2024-02-16T06:57:03Z) - MedYOLO: A Medical Image Object Detection Framework [0.0]
We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models.
We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas.
arXiv Detail & Related papers (2023-12-12T20:46:14Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Deep Feature Fusion for Mitosis Counting [0.0]
The mitotic cell count is one of the most common tests to assess the aggressiveness or grade of breast cancer.
Deep learning networks have been adapted to medical applications which are able to automatically localize regions of interest.
A proposed method leverages Faster RCNN for object detection while fusing segmentation features generated by a UNet with RGB image features to achieve an F-score of 0.508 on the MITOS-ATYPIA 2014 mitosis counting challenge dataset.
arXiv Detail & Related papers (2020-02-01T20:20:00Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
"Multiscale-Decoder Network (MED-Net)" provides pixel-wise labeling into classes of patterns in a quantitative manner.
We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions.
arXiv Detail & Related papers (2020-01-03T22:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.