MedYOLO: A Medical Image Object Detection Framework
- URL: http://arxiv.org/abs/2312.07729v2
- Date: Fri, 7 Jun 2024 16:53:15 GMT
- Title: MedYOLO: A Medical Image Object Detection Framework
- Authors: Joseph Sobek, Jose R. Medina Inojosa, Betsy J. Medina Inojosa, S. M. Rassoulinejad-Mousavi, Gian Marco Conte, Francisco Lopez-Jimenez, Bradley J. Erickson,
- Abstract summary: We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models.
We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed Tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas even without hyperparameter tuning. However, the models struggle with very small or rarely present structures.
Related papers
- MultiOrg: A Multi-rater Organoid-detection Dataset [1.29058164565662]
This dataset comprises over 400 high-resolution 2d microscopy images and curated annotations of more than 60,000 organoids.
We additionally provide a benchmark for organoid detection, and make the best model available through an easily installable, interactive plugin for the popular image visualization tool Napari.
arXiv Detail & Related papers (2024-10-18T17:05:03Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLO is a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers.
ACFM module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies.
MSNN improves multi-scale information aggregation by extracting features across diverse scales.
arXiv Detail & Related papers (2024-08-04T01:44:44Z) - μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X-ray computed microtomography (mu-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples.
extracting relevant information from 3D images requires semantic segmentation of the regions of interest.
We propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus.
arXiv Detail & Related papers (2024-06-24T15:29:08Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
Powerful tools of artificial intelligence such as deep learning are making it feasible now to segment the entire 3D image and generate accurate measurements of all internal anatomy.
These will enable the overcoming of the severe bottleneck that existed previously, namely, the need for manual segmentation.
These measurements were hitherto unavailable thereby limiting the field to a very small and limited subset.
arXiv Detail & Related papers (2021-06-01T17:30:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.