Deep CNNs for Peripheral Blood Cell Classification
- URL: http://arxiv.org/abs/2110.09508v1
- Date: Mon, 18 Oct 2021 17:56:07 GMT
- Title: Deep CNNs for Peripheral Blood Cell Classification
- Authors: Ekta Gavas and Kaustubh Olpadkar
- Abstract summary: We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning techniques to the medical domain is
especially challenging due to the required level of precision and the
incurrence of huge risks of minute errors. Employing these techniques to a more
complex subdomain of hematological diagnosis seems quite promising, with
automatic identification of blood cell types, which can help in detection of
hematologic disorders. In this paper, we benchmark 27 popular deep
convolutional neural network architectures on the microscopic peripheral blood
cell images dataset. The dataset is publicly available, with large number of
normal peripheral blood cells acquired using the CellaVision DM96 analyzer and
identified by expert pathologists into eight different cell types. We fine-tune
the state-of-the-art image classification models pre-trained on the ImageNet
dataset for blood cell classification. We exploit data augmentation techniques
during training to avoid overfitting and achieve generalization. An ensemble of
the top performing models obtains significant improvements over past published
works, achieving the state-of-the-art results with a classification accuracy of
99.51%. Our work provides empirical baselines and benchmarks on standard
deep-learning architectures for microscopic peripheral blood cell recognition
task.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Classification of White Blood Cells Using Machine and Deep Learning
Models: A Systematic Review [8.452349885923507]
Machine learning (ML) and deep learning (DL) models have been employed to significantly improve analyses of medical imagery.
Model predictions and classifications assist diagnoses of various cancers and tumors.
This review presents an in-depth analysis of modern techniques applied within the domain of medical image analysis for white blood cell classification.
arXiv Detail & Related papers (2023-08-11T06:32:25Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Analysis of Vision-based Abnormal Red Blood Cell Classification [1.6050172226234583]
Identification of abnormalities in red blood cells (RBC) is key to diagnosing a range of medical conditions from anaemia to liver disease.
This paper presents an automated process utilising the advantages of machine learning to increase capacity and standardisation of cell abnormality detection.
arXiv Detail & Related papers (2021-06-01T10:52:41Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Sickle-cell disease diagnosis support selecting the most appropriate
machinelearning method: Towards a general and interpretable approach for
cellmorphology analysis from microscopy images [0.0]
We propose an approach to select the classification method and features, based on the state-of-the-art.
We used samples of patients with sickle-cell disease which can be generalized for other study cases.
arXiv Detail & Related papers (2020-10-09T11:46:38Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.