論文の概要: A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2405.10815v1
- Date: Fri, 17 May 2024 14:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 15:53:32.543193
- Title: A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
- Title(参考訳): 非凸非平滑条件確率最適化のための関数モデル法
- Authors: Andrzej Ruszczyński, Shangzhe Yang,
- Abstract要約: 本稿では, 基底乱ベクトルの非線形関数の期待値と, 基底乱ベクトルに依存する他の関数の条件付き期待値を含む最適化問題を考察する。
本研究では, 外部関数が滑らかで, 内部関数が異なる非制約学習問題に対して, 特殊な単一スケール法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider stochastic optimization problems involving an expected value of a nonlinear function of a base random vector and a conditional expectation of another function depending on the base random vector, a dependent random vector, and the decision variables. We call such problems conditional stochastic optimization problems. They arise in many applications, such as uplift modeling, reinforcement learning, and contextual optimization. We propose a specialized single time-scale stochastic method for nonconvex constrained conditional stochastic optimization problems with a Lipschitz smooth outer function and a generalized differentiable inner function. In the method, we approximate the inner conditional expectation with a rich parametric model whose mean squared error satisfies a stochastic version of a {\L}ojasiewicz condition. The model is used by an inner learning algorithm. The main feature of our approach is that unbiased stochastic estimates of the directions used by the method can be generated with one observation from the joint distribution per iteration, which makes it applicable to real-time learning. The directions, however, are not gradients or subgradients of any overall objective function. We prove the convergence of the method with probability one, using the method of differential inclusions and a specially designed Lyapunov function, involving a stochastic generalization of the Bregman distance. Finally, a numerical illustration demonstrates the viability of our approach.
- Abstract(参考訳): 本稿では, 基本確率ベクトルの非線形関数の期待値と, 基本確率ベクトル, 従属確率ベクトル, 決定変数に依存する他の関数の条件予測を含む確率的最適化問題を考察する。
このような問題を条件付き確率最適化問題と呼ぶ。
これらは、アップリフトモデリング、強化学習、文脈最適化など、多くのアプリケーションで発生する。
リプシッツの滑らかな外関数と一般化可能な微分可能な内関数を持つ非凸制約条件付き確率最適化問題に対して、特殊単一時間スケール確率法を提案する。
提案手法では, 内部条件予測を, 平均二乗誤差が {\displaystyle {\L}ojasiewicz 条件の確率バージョンを満たすようなリッチパラメトリックモデルで近似する。
モデルは内部学習アルゴリズムによって使用される。
提案手法の主な特徴は,提案手法が用いた方向の偏りのない確率的推定を,反復毎の関節分布から1つの観測で生成し,実時間学習に適用できる点である。
しかし、方向は全体的目的関数の勾配や下勾配ではない。
微分包含法と特別に設計されたリャプノフ関数を用いて、確率 1 の手法の収束を証明し、ブレグマン距離の確率的一般化を含む。
最後に、数値図示は、我々のアプローチの生存可能性を示すものである。
関連論文リスト
- Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
勾配情報のない制約のない最適化問題を考察する。
適応的なサンプリング準ニュートン法を提案し、共通乱数フレームワーク内の有限差を用いてシミュレーション関数の勾配を推定する。
そこで本研究では, 標準試験と内積準ニュートン試験の修正版を開発し, 近似に使用する試料サイズを制御し, 最適解の近傍に大域収束結果を与える。
論文 参考訳(メタデータ) (2021-09-24T21:49:25Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
本稿では,移動平均(SEMA)問題に基づく広く利用されている推定器のパワーを実証する。
これらすべてのアートな結果に対して、これらのアートな問題に対する結果も提示します。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
本稿では,偏微分方程式などの数学モデルによるベイズ逆問題に対する最適実験設計 (OED) のための二項最適化への新しいアプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性勾配はベルヌーイ分布に対する期待の形で目的関数にキャストされる。
この目的を確率的最適化ルーチンを用いて最適な観測方針を求めることで解決する。
論文 参考訳(メタデータ) (2021-01-15T03:54:12Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions [15.33098084159285]
本稿では,学習環境における分割関数の最適化の問題に対処する。
本稿では,2次代理を持つ分割関数の上界に依存する有界偏化アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-11-03T04:42:51Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。