論文の概要: Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments
- arxiv url: http://arxiv.org/abs/2101.05958v1
- Date: Fri, 15 Jan 2021 03:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 11:13:46.215338
- Title: Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments
- Title(参考訳): 実験最適設計のための二元最適化への確率的学習アプローチ
- Authors: Ahmed Attia and Sven Leyffer and Todd Munson
- Abstract要約: 本稿では,偏微分方程式などの数学モデルによるベイズ逆問題に対する最適実験設計 (OED) のための二項最適化への新しいアプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性勾配はベルヌーイ分布に対する期待の形で目的関数にキャストされる。
この目的を確率的最適化ルーチンを用いて最適な観測方針を求めることで解決する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel stochastic approach to binary optimization for optimal
experimental design (OED) for Bayesian inverse problems governed by
mathematical models such as partial differential equations. The OED utility
function, namely, the regularized optimality criterion, is cast into a
stochastic objective function in the form of an expectation over a multivariate
Bernoulli distribution. The probabilistic objective is then solved by using a
stochastic optimization routine to find an optimal observational policy. The
proposed approach is analyzed from an optimization perspective and also from a
machine learning perspective with correspondence to policy gradient
reinforcement learning. The approach is demonstrated numerically by using an
idealized two-dimensional Bayesian linear inverse problem, and validated by
extensive numerical experiments carried out for sensor placement in a parameter
identification setup.
- Abstract(参考訳): 偏微分方程式のような数学的モデルによって支配されるベイズ逆問題に対する最適実験設計(OED)のための二項最適化の新しい確率的アプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性基準は、多変量ベルヌーイ分布に対する期待の形で確率的目的関数にキャストされる。
次に確率的最適化ルーチンを用いて確率論的目的を解き、最適観測ポリシーを求める。
提案手法は,最適化の観点からも,政策勾配強化学習に対応する機械学習の観点からも解析される。
本手法は, 2次元ベイズ線形逆問題を用いて数値計算を行い, パラメータ同定設定におけるセンサ配置に関する広範囲な数値実験により検証した。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method [0.0]
本稿では,高い出力分散を有するシミュレータの多目的最適化に着目する。
我々はベイズ最適化アルゴリズムを用いて最適化すべき関数の予測を行う。
論文 参考訳(メタデータ) (2022-07-08T11:51:48Z) - Accelerating Stochastic Probabilistic Inference [1.599072005190786]
変分推論(SVI)は確率モデルの良好な後部近似を求める能力により、ますます魅力的になっている。
最先端のSVIアルゴリズムのほとんど全てが一階最適化に基づいており、しばしば収束率の低下に悩まされている。
我々は二階法と変分推論のギャップを二階法に基づく変分推論手法によって埋める。
論文 参考訳(メタデータ) (2022-03-15T01:19:12Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - On the implementation of a global optimization method for mixed-variable
problems [0.30458514384586394]
このアルゴリズムは、グットマンの放射基底関数と、レジスとシューメーカーの計量応答面法に基づいている。
これら2つのアルゴリズムの一般化と改良を目的としたいくつかの修正を提案する。
論文 参考訳(メタデータ) (2020-09-04T13:36:56Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
本稿では,二項制約を持つブラックボックス多目的最適化問題に対する適応最適化アルゴリズムを提案する。
本手法は確率的回帰モデルと分類モデルに基づいており,最適化目標のサロゲートとして機能する。
また,予想される超体積計算を高速化するために,新しい楕円形トランケーション法を提案する。
論文 参考訳(メタデータ) (2020-08-27T09:15:02Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
本稿では,設計ユーティリティ機能のためのカオス拡張サロゲートモデル(PCE)の開発のための新しいアプローチを提案する。
この手法により,対象関数に対する適切な品質応答面の導出が可能となり,計算予算は複数の単点評価に匹敵する。
論文 参考訳(メタデータ) (2020-08-10T09:42:59Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。