論文の概要: Air Signing and Privacy-Preserving Signature Verification for Digital Documents
- arxiv url: http://arxiv.org/abs/2405.10868v1
- Date: Fri, 17 May 2024 16:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 15:43:48.217695
- Title: Air Signing and Privacy-Preserving Signature Verification for Digital Documents
- Title(参考訳): 電子文書の空気署名とプライバシ保護による署名検証
- Authors: P. Sarveswarasarma, T. Sathulakjan, V. J. V. Godfrey, Thanuja D. Ambegoda,
- Abstract要約: 提案されたソリューションは"Air Signature"と呼ばれ、カメラの前でシグネチャを記述する。
目標は、ジェスチャーやオブジェクトをリアルタイムで検出・追跡する最先端の手法を開発することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to the digital signing of electronic documents through the use of a camera-based interaction system, single-finger tracking for sign recognition, and multi commands executing hand gestures. The proposed solution, referred to as "Air Signature," involves writing the signature in front of the camera, rather than relying on traditional methods such as mouse drawing or physically signing on paper and showing it to a web camera. The goal is to develop a state-of-the-art method for detecting and tracking gestures and objects in real-time. The proposed methods include applying existing gesture recognition and object tracking systems, improving accuracy through smoothing and line drawing, and maintaining continuity during fast finger movements. An evaluation of the fingertip detection, sketching, and overall signing process is performed to assess the effectiveness of the proposed solution. The secondary objective of this research is to develop a model that can effectively recognize the unique signature of a user. This type of signature can be verified by neural cores that analyze the movement, speed, and stroke pixels of the signing in real time. The neural cores use machine learning algorithms to match air signatures to the individual's stored signatures, providing a secure and efficient method of verification. Our proposed System does not require sensors or any hardware other than the camera.
- Abstract(参考訳): 本稿では、カメラベースのインタラクションシステム、手話認識のためのシングルフィンガートラッキング、ハンドジェスチャを実行するマルチコマンドを用いて、電子文書のデジタル署名に対する新しいアプローチを提案する。
提案したソリューションは"Air Signature"と呼ばれ、マウスの描画や紙に物理的に署名したり、ウェブカメラに見せたりするといった従来の方法に頼るのではなく、カメラの前で署名を書く。
目標は、ジェスチャーやオブジェクトをリアルタイムで検出・追跡する最先端の手法を開発することである。
提案手法は,既存のジェスチャー認識と物体追跡システムの適用,平滑化と線描画による精度の向上,高速指の動きの連続性維持を含む。
提案手法の有効性を評価するため,指先検出,スケッチ,および全体的な署名処理の評価を行う。
本研究の目的は,ユーザのユニークな署名を効果的に認識できるモデルを開発することである。
このタイプのシグネチャは、署名の移動、速度、ストロークピクセルをリアルタイムで分析する神経コアによって検証することができる。
ニューラルネットワークは、機械学習アルゴリズムを使用して、個々の格納されたシグネチャに空気シグネチャをマッチングし、セキュアで効率的な検証方法を提供する。
提案システムでは,センサやカメラ以外のハードウェアは不要である。
関連論文リスト
- Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder [6.128256936054622]
シグネチャ検証システムの主なタスクは、シグネチャ画像から特徴を抽出し、分類のための分類器を訓練することである。
署名検証モデルがトレーニングされている場合、熟練した偽造の例は、しばしば利用できない。
本稿では, 可変オートエンコーダ(VAE)を用いて, 署名画像から直接特徴を抽出する新しい署名検証手法を提案する。
論文 参考訳(メタデータ) (2024-09-29T19:54:47Z) - UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNITは、単一のモデル内で画像とテキストの認識を統一することを目的とした、新しいトレーニングフレームワークである。
文書関連タスクにおいて,UNITが既存の手法を著しく上回ることを示す。
注目すべきなのは、UNITはオリジナルのビジョンエンコーダアーキテクチャを保持しており、推論とデプロイメントの点で費用がかからないことだ。
論文 参考訳(メタデータ) (2024-09-06T08:02:43Z) - Enhanced Bank Check Security: Introducing a Novel Dataset and Transformer-Based Approach for Detection and Verification [11.225067563482169]
銀行チェックの署名検証に特化して設計された新しいデータセットを提案する。
このデータセットには、典型的なチェック要素に埋め込まれたさまざまなシグネチャスタイルが含まれている。
本稿では,オブジェクト検出ネットワークを用いた文字非依存署名検証のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T14:42:14Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Docmarking: Real-Time Screen-Cam Robust Document Image Watermarking [97.77394585669562]
提案されたアプローチは、そもそもリークを防ぐのではなく、リークのソースを決定することを目的としている。
メソッドは、透かしを半透明画像と識別するユニークな透かしをスクリーンに印加することで機能する。
透かし画像は静止しており、常に画面上に留まっているので、撮影したすべての写真に透かしが表示される。
論文 参考訳(メタデータ) (2023-04-25T09:32:11Z) - Secure access system using signature verification over tablet PC [62.21072852729544]
我々は,シグネチャ検証を用いたWebベースのセキュアアクセスのための,高度に汎用的でスケーラブルなプロトタイプについて述べる。
提案アーキテクチャは,様々な種類のセンサや大規模データベースで動作するように容易に拡張することができる。
論文 参考訳(メタデータ) (2023-01-11T11:05:47Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Anti-Neuron Watermarking: Protecting Personal Data Against Unauthorized
Neural Model Training [50.308254937851814]
個人データ(画像など)は、許可なくディープニューラルネットワークモデルをトレーニングするために不適切に利用することができる。
特殊な線形色変換を使用して透かしシグネチャをユーザイメージに埋め込むことで、ニューラルモデルはそのようなシグネチャでインプリントされる。
これは、ニューラルネットワークトレーニングにおいて、ユーザの個人情報を不正使用から保護する最初の作業である。
論文 参考訳(メタデータ) (2021-09-18T22:10:37Z) - Digitizing Handwriting with a Sensor Pen: A Writer-Independent
Recognizer [0.2580765958706854]
本稿では,センサ付ペンを用いて,平紙に書かれた文字を認識できる文字非依存システムを提案する。
ペンは、ユーザーが印加した線形加速度、角速度、磁場、力を提供し、通常の紙に書きながらセンサーのアナログ信号を時間データに変換するディジタイザとして機能する。
本稿では,文字分類のための畳み込みニューラルネットワークモデルの結果を述べるとともに,本手法が実用的であり,文字に依存しない文字認識において有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-08T09:25:59Z) - Fingerspelling Detection in American Sign Language [32.79935314131377]
未熟な手話ビデオで指のスペル検出のタスクを検討します。
これは、現実世界の指先認識システムを構築するための重要なステップである。
そこで本研究では,下流指先認識課題に対する検出の影響を反映したベンチマークと評価指標を提案する。
論文 参考訳(メタデータ) (2021-04-03T02:11:09Z) - FCN+RL: A Fully Convolutional Network followed by Refinement Layers to
Offline Handwritten Signature Segmentation [3.3144312096837325]
そこで本研究では,手書き署名の画素の識別と抽出を行う手法を提案する。
この技術は、完全な畳み込みエンコーダ・デコーダネットワークと、予測された画像のアルファチャネルのための洗練されたレイヤのブロックを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-28T18:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。