論文の概要: Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder
- arxiv url: http://arxiv.org/abs/2409.19754v1
- Date: Sun, 29 Sep 2024 19:54:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 17:49:48.528564
- Title: Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder
- Title(参考訳): 特徴分散型変分オートエンコーダを用いたオフライン署名検証
- Authors: Hansong Zhang, Jiangjian Guo, Kun Li, Yang Zhang, Yimei Zhao,
- Abstract要約: シグネチャ検証システムの主なタスクは、シグネチャ画像から特徴を抽出し、分類のための分類器を訓練することである。
署名検証モデルがトレーニングされている場合、熟練した偽造の例は、しばしば利用できない。
本稿では, 可変オートエンコーダ(VAE)を用いて, 署名画像から直接特徴を抽出する新しい署名検証手法を提案する。
- 参考スコア(独自算出の注目度): 6.128256936054622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline handwritten signature verification systems are used to verify the identity of individuals, through recognizing their handwritten signature image as genuine signatures or forgeries. The main tasks of signature verification systems include extracting features from signature images and training a classifier for classification. The challenges of these tasks are twofold. First, genuine signatures and skilled forgeries are highly similar in their appearances, resulting in a small inter-class distance. Second, the instances of skilled forgeries are often unavailable, when signature verification models are being trained. To tackle these problems, this paper proposes a new signature verification method. It is the first model that employs a variational autoencoder (VAE) to extract features directly from signature images. To make the features more discriminative, it improves the traditional VAEs by introducing a new loss function for feature disentangling. In addition, it relies on SVM (Support Vector Machine) for classification according to the extracted features. Extensive experiments are conducted on two public datasets: MCYT-75 and GPDS-synthetic where the proposed method significantly outperformed $13$ representative offline signature verification methods. The achieved improvement in distinctive datasets indicates the robustness and great potential of the developed system in real application.
- Abstract(参考訳): オフライン手書き署名検証システムは、手書き署名画像を本物の署名または偽物として認識することで、個人の身元を確認するために使用される。
シグネチャ検証システムの主な課題は、シグネチャ画像から特徴を抽出し、分類のための分類器を訓練することである。
これらのタスクの課題は2つあります。
第一に、本物のシグネチャと熟練した偽造物はその外観に非常によく似ており、クラス間距離は小さい。
第二に、シグネチャ検証モデルがトレーニングされている場合、熟練したフォージェリーのインスタンスは利用できないことが多い。
そこで本研究では,新しい署名検証手法を提案する。
署名画像から直接特徴を抽出するために可変オートエンコーダ(VAE)を使用する最初のモデルである。
機能をより差別的にするために、機能分離のための新しい損失関数を導入することで、従来のVAEを改善します。
さらに、抽出した特徴に応じて分類するためにSVM(Support Vector Machine)に依存している。
MCYT-75とGPDS-syntheticの2つの公開データセットで大規模な実験を行い、提案手法は13ドルの代表的オフライン署名検証法を著しく上回った。
特徴的データセットの達成された改善は、実際のアプリケーションにおける開発システムの堅牢性と大きなポテンシャルを示している。
関連論文リスト
- Enhanced Bank Check Security: Introducing a Novel Dataset and Transformer-Based Approach for Detection and Verification [11.225067563482169]
銀行チェックの署名検証に特化して設計された新しいデータセットを提案する。
このデータセットには、典型的なチェック要素に埋め込まれたさまざまなシグネチャスタイルが含まれている。
本稿では,オブジェクト検出ネットワークを用いた文字非依存署名検証のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T14:42:14Z) - Investigating the Common Authorship of Signatures by Off-Line Automatic Signature Verification Without the Use of Reference Signatures [3.3498759480099856]
本稿では,参照シグネチャが存在しない場合に,自動シグネチャ検証の問題に対処する。
私たちが探求するシナリオは、同じ著者または複数の署名者によって署名される可能性のある署名のセットで構成されています。
オフラインシグネチャの集合の共通オーサシップを自動的に推定する3つの方法について議論する。
論文 参考訳(メタデータ) (2024-05-23T10:30:48Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
補助的なアノテーションやデータなしに両方の制約に対処するために,新しいFIne-fine Representation and Recomposition (FIRe$2$) フレームワークを提案する。
FIRe$2$は、広く使われている5つのRe-IDベンチマークで最先端のパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2023-08-21T12:59:48Z) - Same or Different? Diff-Vectors for Authorship Analysis [78.83284164605473]
古典的な著作物分析において、特徴ベクトルは文書を表し、特徴の値は文書中の特徴の相対周波数(関数の増大)を表し、クラスラベルは文書の著者を表す。
筆者らの実験は共著者検証,著者検証,クローズドセットの著者帰属に取り組んでおり,DVは自然に第1の問題を解くのに向いているが,第2と第3の問題を解くための2つの新しい方法も提供している。
論文 参考訳(メタデータ) (2023-01-24T08:48:12Z) - IDPS Signature Classification with a Reject Option and the Incorporation
of Expert Knowledge [3.867363075280544]
我々は、侵入検知防止システム(IDPS)のセットアップコストを削減するために、リジェクションオプション(RO)を用いた機械学習署名分類モデルを提案し、評価する。
提案モデルを訓練するためには,署名分類に有効な特徴を設計することが不可欠である。
提案手法の有効性を,専門家によってラベル付けされた2つの実データを用いて評価した。
論文 参考訳(メタデータ) (2022-07-19T06:09:33Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
既存の手法では、目に見える部分を識別するために、余分なネットワークによって提供される身体の手がかりを利用することで、この問題に対処している。
2つの自己明快な事前知識に基づく新しい動的プロトタイプマスク(DPM)を提案する。
この条件下では、隠蔽された表現は、選択された部分空間において自然にうまく整列することができる。
論文 参考訳(メタデータ) (2022-07-19T03:31:13Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - SURDS: Self-Supervised Attention-guided Reconstruction and Dual Triplet
Loss for Writer Independent Offline Signature Verification [16.499360910037904]
オフライン署名検証(英: Offline Signature Verification、OSV)は、法学、商業、法学の様々な分野における基本的な生体計測の課題である。
著者に依存しないOSVにおける自己教師付き表現学習とメートル法学習を活用する2段階のディープラーニングフレームワークを提案する。
提案したフレームワークは2つのオフライン署名データセットで評価され、様々な最先端の手法と比較されている。
論文 参考訳(メタデータ) (2022-01-25T07:26:55Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - Offline Signature Verification on Real-World Documents [9.271640666465363]
正式な文書から抽出された署名には、スタンプ、会社のシール、支配線、署名ボックスなど、さまざまな種類の隠蔽が含まれている。
本稿では,現実の作家によるオフライン署名検証問題に対処し,銀行の顧客の取引要求文書に隠蔽された署名を記載した文書をクリーンリファレンス署名と比較する。
提案手法は,CycleGANに基づくスタンプクリーニング法とCNNに基づくシグネチャ表現の2つの主成分からなる。
論文 参考訳(メタデータ) (2020-04-25T10:28:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。