論文の概要: Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
- arxiv url: http://arxiv.org/abs/2405.10957v1
- Date: Fri, 5 Apr 2024 13:54:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:39:42.493278
- Title: Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
- Title(参考訳): 統計力学とニューラルネットワーク:原理,モデル,応用
- Authors: Lucas Böttcher, Gregory Wheeler,
- Abstract要約: 神経科学の分野と人工ニューラルネットワーク(ANN)の発展は相互に影響を与えてきた。
この章の第1章では、ANNの原則、モデル、および応用の概要を紹介します。
この章の第2章では、幾何学的性質の定量化と、深いANNに関連する損失関数の可視化に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of neuroscience and the development of artificial neural networks (ANNs) have mutually influenced each other, drawing from and contributing to many concepts initially developed in statistical mechanics. Notably, Hopfield networks and Boltzmann machines are versions of the Ising model, a model extensively studied in statistical mechanics for over a century. In the first part of this chapter, we provide an overview of the principles, models, and applications of ANNs, highlighting their connections to statistical mechanics and statistical learning theory. Artificial neural networks can be seen as high-dimensional mathematical functions, and understanding the geometric properties of their loss landscapes (i.e., the high-dimensional space on which one wishes to find extrema or saddles) can provide valuable insights into their optimization behavior, generalization abilities, and overall performance. Visualizing these functions can help us design better optimization methods and improve their generalization abilities. Thus, the second part of this chapter focuses on quantifying geometric properties and visualizing loss functions associated with deep ANNs.
- Abstract(参考訳): 神経科学の分野と人工ニューラルネットワーク(ANN)の開発は相互に影響を与え、統計力学で最初に開発された多くの概念に寄与している。
特にホップフィールド・ネットワークとボルツマン・マシンはイジング・モデルのバージョンであり、これは1世紀以上にわたって統計力学で広く研究されてきたモデルである。
本章の第1章では、ANNの原理、モデル、応用について概説し、統計力学と統計学習理論との関係を明らかにする。
人工ニューラルネットワークは、高次元の数学的関数と見なすことができ、損失ランドスケープの幾何学的性質(すなわち、エクストリームやサドルを見つけようとする高次元空間)を理解することで、最適化挙動、一般化能力、全体的なパフォーマンスに関する貴重な洞察を与えることができる。
これらの関数を視覚化することで、より良い最適化方法を設計し、それらの一般化能力を改善するのに役立つ。
したがって、この章の第2章では、幾何学的性質の定量化と、深いANNに関連する損失関数の可視化に焦点を当てている。
関連論文リスト
- High-dimensional learning of narrow neural networks [1.7094064195431147]
この原稿は、機械学習の最近の進歩の根底にあるツールとアイデアをレビューしている。
本稿では,これまで研究されてきたモデルを特殊インスタンスとして包含する汎用モデル(シーケンスマルチインデックスモデル)を提案する。
複製法や近似メッセージパッシングアルゴリズムなどの統計物理手法を用いて,シーケンス多重インデックスモデルの学習過程を詳細に解析する。
論文 参考訳(メタデータ) (2024-09-20T21:20:04Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
本稿では,これらすべてのアーキテクチャの共通表現に関する原則的な調査を可能にする動的システムフレームワーク(DSF)について紹介する。
ソフトマックスアテンションと他のモデルクラスとの原理的比較を行い、ソフトマックスアテンションを近似できる理論条件について議論する。
このことは、DSFが将来のより効率的でスケーラブルな基盤モデルの体系的な開発を導く可能性を示している。
論文 参考訳(メタデータ) (2024-05-24T17:19:57Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
本稿では, ニューラルネットワークカーネル(NTK)に基づく理論的手法を提案し, そのメカニズムを解明する。
これらのモデルが勾配降下時の統計的特徴をどのように活用し、最終決定にどのように統合されるかを明らかにする。
自己注意モデルとCNNモデルはn-gramの学習の限界を示すが、乗算モデルはこの領域で優れていると考えられる。
論文 参考訳(メタデータ) (2023-10-25T04:22:40Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Visualizing High-Dimensional Trajectories on the Loss-Landscape of ANNs [15.689418447376587]
ニューラルネットワークを訓練するには、高度に非次元的な損失関数の最適化が必要である。
可視化ツールは、ANNの損失ランドスケープの鍵となる幾何学的特徴を明らかにする上で重要な役割を果たしてきた。
局所構造と大域構造の両方でSOTAを表すモダニティ低減手法を提案する。
論文 参考訳(メタデータ) (2021-01-31T16:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。