論文の概要: Benchmark Early and Red Team Often: A Framework for Assessing and Managing Dual-Use Hazards of AI Foundation Models
- arxiv url: http://arxiv.org/abs/2405.10986v1
- Date: Wed, 15 May 2024 20:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:56:17.871598
- Title: Benchmark Early and Red Team Often: A Framework for Assessing and Managing Dual-Use Hazards of AI Foundation Models
- Title(参考訳): Benchmark EarlyとRed Team Often: AIファンデーションモデルのデュアルユースハザードの評価と管理のためのフレームワーク
- Authors: Anthony M. Barrett, Krystal Jackson, Evan R. Murphy, Nada Madkour, Jessica Newman,
- Abstract要約: 最先端または「最先端」のAI基盤モデルに対する懸念は、敵が化学、生物学的、放射線学的、核、サイバー、その他の攻撃に備えるためにモデルを使用する可能性があることである。
少なくとも2つの手法は、潜在的な二重利用能力を持つ基礎モデルを特定することができる。
オープンベンチマークとクローズドレッドチーム評価の両方を含む手法を組み合わせた研究・リスク管理手法を提案する。
- 参考スコア(独自算出の注目度): 0.2383122657918106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A concern about cutting-edge or "frontier" AI foundation models is that an adversary may use the models for preparing chemical, biological, radiological, nuclear, (CBRN), cyber, or other attacks. At least two methods can identify foundation models with potential dual-use capability; each has advantages and disadvantages: A. Open benchmarks (based on openly available questions and answers), which are low-cost but accuracy-limited by the need to omit security-sensitive details; and B. Closed red team evaluations (based on private evaluation by CBRN and cyber experts), which are higher-cost but can achieve higher accuracy by incorporating sensitive details. We propose a research and risk-management approach using a combination of methods including both open benchmarks and closed red team evaluations, in a way that leverages advantages of both methods. We recommend that one or more groups of researchers with sufficient resources and access to a range of near-frontier and frontier foundation models run a set of foundation models through dual-use capability evaluation benchmarks and red team evaluations, then analyze the resulting sets of models' scores on benchmark and red team evaluations to see how correlated those are. If, as we expect, there is substantial correlation between the dual-use potential benchmark scores and the red team evaluation scores, then implications include the following: The open benchmarks should be used frequently during foundation model development as a quick, low-cost measure of a model's dual-use potential; and if a particular model gets a high score on the dual-use potential benchmark, then more in-depth red team assessments of that model's dual-use capability should be performed. We also discuss limitations and mitigations for our approach, e.g., if model developers try to game benchmarks by including a version of benchmark test data in a model's training data.
- Abstract(参考訳): 最先端または「最先端」のAI基盤モデルに対する懸念は、敵が化学、生物学的、放射線学的、核、CBRN、サイバー、その他の攻撃に備えるためにモデルを使用する可能性があることである。
A. オープンベンチマーク(公開可能な質問と回答に基づく)は低コストだが、セキュリティに敏感な詳細を省略する必要性によって精度が制限されている。
オープンベンチマークとクローズドレッドチーム評価の両方を含む手法を組み合わせて,両手法の利点を生かした研究・リスク管理手法を提案する。
十分なリソースを持ち、フロンティアとフロンティアのファンデーションモデルにアクセス可能な研究者の1つ以上のグループは、デュアルユース能力評価ベンチマークとレッドチーム評価を通じて、ファンデーションモデルのセットを実行することを推奨します。
オープンベンチマークがファンデーションモデル開発において、モデルの2つの使用可能性の迅速かつ低コストな測定手段として頻繁に使用されるべきであり、もし特定のモデルが2つの使用可能性のベンチマークで高いスコアを得た場合、そのモデルの2つの使用能力に関するより深いレッドチーム評価が行われるべきである。
また、モデル開発者がモデルのトレーニングデータにベンチマークテストデータのバージョンを含めることで、ベンチマークをゲームしようとする場合など、我々のアプローチの制限や緩和についても論じる。
関連論文リスト
- CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - Exploring Cross-model Neuronal Correlations in the Context of Predicting Model Performance and Generalizability [2.6708879445664584]
本稿では,新しいモデルを用いたモデルの性能評価手法を提案する。
提案手法は,1つのネットワーク内の各ニューロンに対して,類似の出力を生成する他のネットワークにニューロンが存在するかどうかを判定することにより相関性を評価する。
論文 参考訳(メタデータ) (2024-08-15T22:57:39Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - When is an Embedding Model More Promising than Another? [33.540506562970776]
埋め込みは機械学習において中心的な役割を担い、あらゆるオブジェクトを数値表現に投影し、様々な下流タスクを実行するために利用することができる。
埋め込みモデルの評価は一般にドメイン固有の経験的アプローチに依存する。
本稿では, 組込み器の評価を統一的に行い, 充足性と情報性の概念を考察する。
論文 参考訳(メタデータ) (2024-06-11T18:13:46Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Evaluating the Evaluators: Are Current Few-Shot Learning Benchmarks Fit
for Purpose? [11.451691772914055]
本稿では,タスクレベル評価に関する最初の研究について述べる。
数ショット設定における性能推定器の精度を測定した。
評価者の失敗の理由を, 多くの場合, 頑健であると考えられる理由について検討する。
論文 参考訳(メタデータ) (2023-07-06T02:31:38Z) - Benchmarking Foundation Models with Language-Model-as-an-Examiner [47.345760054595246]
本稿では,新しいベンチマークフレームワークLanguage-Model-as-an-Examinerを提案する。
LMは、その知識に基づいて質問を定式化し、基準のない方法で応答を評価する、知識に富んだ検査者として機能する。
論文 参考訳(メタデータ) (2023-06-07T06:29:58Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
我々は,テキストバックドア学習の実装と評価を促進するオープンソースツールキットOpenBackdoorを開発した。
また,単純なクラスタリングに基づく防御ベースラインであるCUBEを提案する。
論文 参考訳(メタデータ) (2022-06-17T02:29:23Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
情報検索のための異種ベンチマークであるBEIRを紹介する。
ゼロショット評価設定における9つの最先端の検索モデルの有効性を検討する。
Dense-Retrievalモデルは計算効率が良いが、他のアプローチでは性能が劣ることが多い。
論文 参考訳(メタデータ) (2021-04-17T23:29:55Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
ロバストネスのベンチマークにおける主な課題は、その評価がしばしばエラーを起こし、ロバストネス過大評価につながることである。
我々は,白箱攻撃と黒箱攻撃のアンサンブルであるAutoAttackを用いて,敵対的ロバスト性を評価する。
分散シフト,キャリブレーション,アウト・オブ・ディストリビューション検出,フェアネス,プライバシリーク,スムースネス,転送性に対するロバスト性の影響を解析した。
論文 参考訳(メタデータ) (2020-10-19T17:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。