Higher-order Spatio-temporal Physics-incorporated Graph Neural Network for Multivariate Time Series Imputation
- URL: http://arxiv.org/abs/2405.10995v2
- Date: Thu, 18 Jul 2024 13:29:44 GMT
- Title: Higher-order Spatio-temporal Physics-incorporated Graph Neural Network for Multivariate Time Series Imputation
- Authors: Guojun Liang, Prayag Tiwari, Slawomir Nowaczyk, Stefan Byttner,
- Abstract summary: Missing values is an essential but challenging issue due to the complex latent-temporal correlation and dynamic nature of time series.
We propose a higher-ordertemporal physics-incorporated Graph Neural Networks (HSPGNN) to address this problem.
HSPGNN provides better dynamic analysis and explanation than traditional data-driven models.
- Score: 9.450743095412896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploring the missing values is an essential but challenging issue due to the complex latent spatio-temporal correlation and dynamic nature of time series. Owing to the outstanding performance in dealing with structure learning potentials, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) are often used to capture such complex spatio-temporal features in multivariate time series. However, these data-driven models often fail to capture the essential spatio-temporal relationships when significant signal corruption occurs. Additionally, calculating the high-order neighbor nodes in these models is of high computational complexity. To address these problems, we propose a novel higher-order spatio-temporal physics-incorporated GNN (HSPGNN). Firstly, the dynamic Laplacian matrix can be obtained by the spatial attention mechanism. Then, the generic inhomogeneous partial differential equation (PDE) of physical dynamic systems is used to construct the dynamic higher-order spatio-temporal GNN to obtain the missing time series values. Moreover, we estimate the missing impact by Normalizing Flows (NF) to evaluate the importance of each node in the graph for better explainability. Experimental results on four benchmark datasets demonstrate the effectiveness of HSPGNN and the superior performance when combining various order neighbor nodes. Also, graph-like optical flow, dynamic graphs, and missing impact can be obtained naturally by HSPGNN, which provides better dynamic analysis and explanation than traditional data-driven models. Our code is available at https://github.com/gorgen2020/HSPGNN.
Related papers
- On The Temporal Domain of Differential Equation Inspired Graph Neural
Networks [14.779420473274737]
We show that our model, called TDE-GNN, can capture a wide range of temporal dynamics that go beyond typical first or second-order methods.
We demonstrate the benefit of learning the temporal dependencies using our method rather than using pre-defined temporal dynamics on several graph benchmarks.
arXiv Detail & Related papers (2024-01-20T01:12:57Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.