Large Language Models in Wireless Application Design: In-Context Learning-enhanced Automatic Network Intrusion Detection
- URL: http://arxiv.org/abs/2405.11002v1
- Date: Fri, 17 May 2024 02:56:31 GMT
- Title: Large Language Models in Wireless Application Design: In-Context Learning-enhanced Automatic Network Intrusion Detection
- Authors: Han Zhang, Akram Bin Sediq, Ali Afana, Melike Erol-Kantarci,
- Abstract summary: We propose a pre-trained LLM-empowered framework to perform fully automatic network intrusion detection.
With experiments on a real network intrusion detection dataset, in-context learning proves to be highly beneficial.
We show that for GPT-4, testing accuracy and F1-Score can be improved by 90%.
- Score: 11.509880721677156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), especially generative pre-trained transformers (GPTs), have recently demonstrated outstanding ability in information comprehension and problem-solving. This has motivated many studies in applying LLMs to wireless communication networks. In this paper, we propose a pre-trained LLM-empowered framework to perform fully automatic network intrusion detection. Three in-context learning methods are designed and compared to enhance the performance of LLMs. With experiments on a real network intrusion detection dataset, in-context learning proves to be highly beneficial in improving the task processing performance in a way that no further training or fine-tuning of LLMs is required. We show that for GPT-4, testing accuracy and F1-Score can be improved by 90%. Moreover, pre-trained LLMs demonstrate big potential in performing wireless communication-related tasks. Specifically, the proposed framework can reach an accuracy and F1-Score of over 95% on different types of attacks with GPT-4 using only 10 in-context learning examples.
Related papers
- Leveraging Large Language Models for Wireless Symbol Detection via In-Context Learning [29.28683810366379]
We propose to leverage the in-context learning ability (a.k.a. prompting) of large language models (LLMs) to solve wireless tasks in the low data regime without any training or fine-tuning.
Our results reveal that using LLMs via ICL methods generally outperforms traditional DNNs on the symbol demodulation task.
arXiv Detail & Related papers (2024-08-28T17:19:20Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
We propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer.
The proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization.
The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
arXiv Detail & Related papers (2024-05-14T10:46:33Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large Language Models (LLMs) have revolutionized natural language processing tasks.
Their deployment in wireless networks still face challenges, i.e., a lack of privacy and security protection mechanisms.
We introduce two personalized wireless federated fine-tuning methods with low communication overhead.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
This paper is the first to conduct an exhaustive study on Large Language Models' comprehension of computer networks.
We evaluate our framework on multiple computer networks employing proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
arXiv Detail & Related papers (2024-04-19T07:41:54Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.