Leveraging Large Language Models for Wireless Symbol Detection via In-Context Learning
- URL: http://arxiv.org/abs/2409.00124v2
- Date: Sun, 8 Sep 2024 14:49:46 GMT
- Title: Leveraging Large Language Models for Wireless Symbol Detection via In-Context Learning
- Authors: Momin Abbas, Koushik Kar, Tianyi Chen,
- Abstract summary: We propose to leverage the in-context learning ability (a.k.a. prompting) of large language models (LLMs) to solve wireless tasks in the low data regime without any training or fine-tuning.
Our results reveal that using LLMs via ICL methods generally outperforms traditional DNNs on the symbol demodulation task.
- Score: 29.28683810366379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have made significant strides in tackling challenging tasks in wireless systems, especially when an accurate wireless model is not available. However, when available data is limited, traditional DNNs often yield subpar results due to underfitting. At the same time, large language models (LLMs) exemplified by GPT-3, have remarkably showcased their capabilities across a broad range of natural language processing tasks. But whether and how LLMs can benefit challenging non-language tasks in wireless systems is unexplored. In this work, we propose to leverage the in-context learning ability (a.k.a. prompting) of LLMs to solve wireless tasks in the low data regime without any training or fine-tuning, unlike DNNs which require training. We further demonstrate that the performance of LLMs varies significantly when employed with different prompt templates. To solve this issue, we employ the latest LLM calibration methods. Our results reveal that using LLMs via ICL methods generally outperforms traditional DNNs on the symbol demodulation task and yields highly confident predictions when coupled with calibration techniques.
Related papers
- Towards Explainable Network Intrusion Detection using Large Language Models [3.8436076642278745]
Large Language Models (LLMs) have revolutionised natural language processing tasks, particularly as chat agents.
This paper examines the feasibility of employing LLMs as a Network Intrusion Detection System (NIDS)
Preliminary exploration shows that LLMs are unfit for the detection of Malicious NetFlows.
Most promisingly, these exhibit significant potential as complementary agents in NIDS, particularly in providing explanations and aiding in threat response when integrated with Retrieval Augmented Generation (RAG) and function calling capabilities.
arXiv Detail & Related papers (2024-08-08T09:59:30Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
Large Language Models (LLMs) have revolutionized language understanding and human-like text generation.
This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies.
We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications.
arXiv Detail & Related papers (2024-05-22T05:19:51Z) - Large Language Models in Wireless Application Design: In-Context Learning-enhanced Automatic Network Intrusion Detection [11.509880721677156]
We propose a pre-trained LLM-empowered framework to perform fully automatic network intrusion detection.
With experiments on a real network intrusion detection dataset, in-context learning proves to be highly beneficial.
We show that for GPT-4, testing accuracy and F1-Score can be improved by 90%.
arXiv Detail & Related papers (2024-05-17T02:56:31Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP) is a novel plug-and-play method to assist pre-trained language models in learning beneficial knowledge from knowledge graphs.
Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks.
arXiv Detail & Related papers (2023-09-27T06:33:29Z) - Rethinking Learning Rate Tuning in the Era of Large Language Models [11.87985768634266]
Large Language Models (LLMs) represent the recent success of deep learning in achieving remarkable human-like predictive performance.
It has become a mainstream strategy to leverage fine-tuning to adapt LLMs for various real-world applications.
Existing learning rate policies are primarily designed for training traditional deep neural networks (DNNs)
arXiv Detail & Related papers (2023-09-16T03:37:00Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.