論文の概要: ARDDQN: Attention Recurrent Double Deep Q-Network for UAV Coverage Path Planning and Data Harvesting
- arxiv url: http://arxiv.org/abs/2405.11013v1
- Date: Fri, 17 May 2024 16:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:46:29.535430
- Title: ARDDQN: Attention Recurrent Double Deep Q-Network for UAV Coverage Path Planning and Data Harvesting
- Title(参考訳): ARDDQN:UAVカバーパス計画とデータハーベスティングのための二重深度Q-Networkの注意
- Authors: Praveen Kumar, Priyadarshni, Rajiv Misra,
- Abstract要約: 無人航空機(UAV)は、データ収集(DH)とカバレッジパス計画(CPP)で人気を博している。
本稿では、Double Deep Q-networks(DDQN)とリカレントニューラルネットワーク(RNN)を統合したARDDQN(Recurrent Double Q Network)を提案する。
圧縮された地球環境マップと、UAVエージェントが大規模環境に効率よくスケールすることを示すローカルマップからなる構造化環境マップを用いている。
- 参考スコア(独自算出の注目度): 3.746548465186206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) have gained popularity in data harvesting (DH) and coverage path planning (CPP) to survey a given area efficiently and collect data from aerial perspectives, while data harvesting aims to gather information from various Internet of Things (IoT) sensor devices, coverage path planning guarantees that every location within the designated area is visited with minimal redundancy and maximum efficiency. We propose the ARDDQN (Attention-based Recurrent Double Deep Q Network), which integrates double deep Q-networks (DDQN) with recurrent neural networks (RNNs) and an attention mechanism to generate path coverage choices that maximize data collection from IoT devices and to learn a control scheme for the UAV that generalizes energy restrictions. We employ a structured environment map comprising a compressed global environment map and a local map showing the UAV agent's locate efficiently scaling to large environments. We have compared Long short-term memory (LSTM), Bi-directional long short-term memory (Bi-LSTM), Gated recurrent unit (GRU) and Bidirectional gated recurrent unit (Bi-GRU) as recurrent neural networks (RNN) to the result without RNN We propose integrating the LSTM with the Attention mechanism to the existing DDQN model, which works best on evolution parameters, i.e., data collection, landing, and coverage ratios for the CPP and data harvesting scenarios.
- Abstract(参考訳): 無人航空機(UAV)は、特定の領域を効率的に調査し、航空的な視点からデータを収集するためのデータ収集(DH)とカバレッジパス計画(CPP)で人気を集めており、データ収集は様々なモノのインターネット(IoT)センサーデバイスから情報を収集することを目的としており、指定された領域内のすべての場所が最小冗長性と最大効率で訪問されることを保証する。
本稿では,Double Deep Q-networks(DDQN)とリカレントニューラルネットワーク(RNN)を統合したARDDQN(Attention-based Recurrent Double Deep Q Network)を提案する。
圧縮された地球環境マップと、UAVエージェントが大規模環境に効率よくスケールすることを示すローカルマップからなる構造化環境マップを用いている。
我々は,Long Short-term memory (LSTM), Bi-directional long short-term memory (Bi-LSTM), Gated Recurrent Unit (GRU), Bidirectional gated Recurrent Unit (Bi-GRU) を,RNNを使わずにリカレントニューラルネットワーク (RNN) として比較した。
関連論文リスト
- PreRoutGNN for Timing Prediction with Order Preserving Partition: Global
Circuit Pre-training, Local Delay Learning and Attentional Cell Modeling [84.34811206119619]
本稿では,事前のタイミング予測に対する2段階のアプローチを提案する。
まず、回路網リストからグローバルグラフ埋め込みを学習するグラフオートエンコーダを事前学習するためのグローバル回路トレーニングを提案する。
第2に、GCN上のメッセージパッシングのための新しいノード更新方式を、学習したグラフ埋め込みと回路グラフのトポロジ的ソートシーケンスに従って使用する。
21個の実世界の回路の実験では、スラック予測のための新しいSOTA R2が0.93で達成され、以前のSOTA法では0.59をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-27T02:23:07Z) - UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT
Networks by Transformer [8.203870302926614]
IoT(Internet-of-Things)ネットワークにおけるデータ収集の鮮度維持が注目されている。
クラスター型IoTネットワークを支援する無人航空機(UAV)の軌道計画問題について検討する。
地上IoTネットワークからのUAVによる収集データの総AoIを最小化するために最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-11-08T17:13:19Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
エンド・ツー・エンド(E2E)遅延の最小化を目的としたAANETにおけるルーティングのための深層強化学習を起動する。
最深Qネットワーク(DQN)は、転送ノードで観測される最適ルーティング決定と局所的な地理的情報との関係をキャプチャする。
フィードバック機構を組み込んだディープバリューネットワーク(DVN)を用いて,システムのダイナミクスに関する知識をさらに活用する。
論文 参考訳(メタデータ) (2021-10-28T14:18:56Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
航空アドホックネットワーク(AANET)のルーティングを支援するために、ディープラーニング(DL)を起動する。
フォワードノードによって観測された局所的な地理的情報を最適な次のホップを決定するために必要な情報にマッピングするために、ディープニューラルネットワーク(DNN)が考案される。
DL支援ルーティングアルゴリズムを多目的シナリオに拡張し,遅延を最小化し,経路容量を最大化し,経路寿命を最大化する。
論文 参考訳(メタデータ) (2021-10-28T14:18:22Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
本稿では,データ収集ミッションを定義するシナリオパラメータの深い変化に適応できるマルチエージェント強化学習(MARL)手法を提案する。
提案するネットワークアーキテクチャにより,データ収集タスクを慎重に分割することで,エージェントが効果的に協調できることを示す。
論文 参考訳(メタデータ) (2020-10-23T14:59:30Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。