From Generalist to Specialist: Improving Large Language Models for Medical Physics Using ARCoT
- URL: http://arxiv.org/abs/2405.11040v1
- Date: Fri, 17 May 2024 18:31:38 GMT
- Title: From Generalist to Specialist: Improving Large Language Models for Medical Physics Using ARCoT
- Authors: Jace Grandinetti, Rafe McBeth,
- Abstract summary: ARCoT (Adaptable Retrieval-based Chain of Thought) is a framework designed to enhance the domain-specific accuracy of Large Language Models (LLMs)
Our model outperformed standard LLMs and reported average human performance, demonstrating improvements of up to 68%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable progress, yet their application in specialized fields, such as medical physics, remains challenging due to the need for domain-specific knowledge. This study introduces ARCoT (Adaptable Retrieval-based Chain of Thought), a framework designed to enhance the domain-specific accuracy of LLMs without requiring fine-tuning or extensive retraining. ARCoT integrates a retrieval mechanism to access relevant domain-specific information and employs step-back and chain-of-thought prompting techniques to guide the LLM's reasoning process, ensuring more accurate and context-aware responses. Benchmarking on a medical physics multiple-choice exam, our model outperformed standard LLMs and reported average human performance, demonstrating improvements of up to 68% and achieving a high score of 90%. This method reduces hallucinations and increases domain-specific performance. The versatility and model-agnostic nature of ARCoT make it easily adaptable to various domains, showcasing its significant potential for enhancing the accuracy and reliability of LLMs in specialized fields.
Related papers
- Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context learning (ICL) is a cheap and efficient alternative but cannot match the accuracies of advanced methods.
We present Ensemble SuperICL, a novel approach that enhances ICL by leveraging the expertise of multiple fine-tuned small language models (SLMs)
arXiv Detail & Related papers (2024-10-29T09:02:37Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
We investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift.
We devise a series of experiments to empirically explain the performance gap.
arXiv Detail & Related papers (2024-09-27T05:06:43Z) - Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment [16.39696580487218]
Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval.
Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks.
arXiv Detail & Related papers (2024-08-22T08:16:07Z) - DOLLmC: DevOps for Large Language model Customization [0.0]
This research aims to establish a scalable and efficient framework for LLM customization.
We propose a robust framework that enhances continuous learning, seamless deployment, and rigorous version control of LLMs.
arXiv Detail & Related papers (2024-05-19T15:20:27Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
Large language models often fall short of the performance achieved by domain-specific state-of-the-art models.
One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets.
We propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA)
Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks.
arXiv Detail & Related papers (2024-02-20T09:02:55Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
This paper proposes an AI-enabled methodological framework that combines the power of Large Language Models (LLMs) with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability.
arXiv Detail & Related papers (2023-06-15T02:52:50Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.