論文の概要: Enhancing Understanding Through Wildlife Re-Identification
- arxiv url: http://arxiv.org/abs/2405.11112v1
- Date: Fri, 17 May 2024 22:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:27:00.766130
- Title: Enhancing Understanding Through Wildlife Re-Identification
- Title(参考訳): 野生生物の再同定による理解の促進
- Authors: J. Buitenhuis,
- Abstract要約: 複数のデータセット上で複数のモデルの性能を解析する。
分類のためにトレーニングされたメトリクスを使用し、次に出力層を取り除き、第2の最終層を埋め込みとして使用することは、学習の戦略として成功しなかったことが分かりました。
DCNNSはいくつかのデータセットでは良好に動作したが、他のデータセットではうまく動作しなかった。
LightGBMは過度に過度に適合しており、測定基準として正確性を使用して全てのペアで訓練および評価を行う場合、定型モデルよりも著しくは優れていなかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the field of wildlife re-identification by implementing an MLP from scratch using NumPy, A DCNN using Keras, and a binary classifier with LightGBM for the purpose of learning for an assignment. Analyzing the performance of multiple models on multiple datasets. We attempt to replicate prior research in metric learning for wildlife re-identification. Firstly, we find that the usage of MLPs trained for classification, then removing the output layer and using the second last layer as an embedding was not a successful strategy for similar learning; it seems like losses designed for embeddings such as triplet loss are required. The DCNNS performed well on some datasets but poorly on others, which did not align with findings in previous literature. The LightGBM classifier overfitted too heavily and was not significantly better than a constant model when trained and evaluated on all pairs using accuracy as a metric. The technical implementations used seem to match standards according to comparisons with documentation examples and good results on certain datasets. However, there is still more to explore in regards to being able to fully recreate past literature.
- Abstract(参考訳): 我々は,NumPy,Kerasを用いたDCNN,およびLightGBMを用いた2値分類器をスクラッチから実装することにより,野生生物の再同定の分野を探究する。
複数のデータセット上で複数のモデルのパフォーマンスを分析する。
野生生物の再同定のための計量学習における先行研究を再現しようと試みる。
まず、分類のために訓練されたMLPを除去し、次に出力層を除去し、第2の最終層を埋め込みとして使用することは、類似した学習戦略としては成功しなかったことが判明し、三重項損失のような埋め込みのために設計された損失が要求される。
DCNNSはいくつかのデータセットでは良好に動作したが、他のデータセットではうまく動作しなかった。
LightGBM分類器は過度に過度に適合しており、精度を基準として全てのペアを訓練・評価する際には定型モデルよりも大幅に優れていなかった。
使用した技術的実装は、ドキュメントの例と特定のデータセットのよい結果との比較によって、標準と一致しているように思われる。
しかし、過去の文学を完全に再現できることについては、まだ探究する余地が残っている。
関連論文リスト
- Low-Resource Crop Classification from Multi-Spectral Time Series Using Lossless Compressors [6.379065975644869]
深層学習は多スペクトル時間データを用いた作物分類の精度を大幅に向上させた。
ラベル付きサンプルが少ない低リソース環境では、深層学習モデルは不十分なデータのために性能が悪い。
本稿では,これらの状況に対処するために,ディープラーニングモデルに代わる非学習的代替案を提案する。
論文 参考訳(メタデータ) (2024-05-28T12:28:12Z) - SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot
Neural Sparse Retrieval [92.27387459751309]
ニューラルスパース検索を評価するための統一PythonツールキットであるSPRINTを提供する。
我々は、よく認識されているベンチマークBEIRにおいて、強く再現可能なゼロショットスパース検索ベースラインを確立する。
SPLADEv2は、元のクエリとドキュメントの外で、ほとんどのトークンでスパース表現を生成する。
論文 参考訳(メタデータ) (2023-07-19T22:48:02Z) - Improving Primate Sounds Classification using Binary Presorting for Deep
Learning [6.044912425856236]
本稿では,MELスペクトル表現のサブセグメンテーションを初めてリラベルする一般化アプローチを提案する。
バイナリプリソートと分類の両方において、畳み込みニューラルネットワーク(CNN)と様々なデータ拡張技術を利用する。
本研究は,異なる霊長類種の音の分類を課題とする,挑戦的なTextitComparE 2021データセットについて,本手法の結果を紹介する。
論文 参考訳(メタデータ) (2023-06-28T09:35:09Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
遅延変数を用いた圧縮による非パラメトリック学習(NPC-LV)を提案する。
NPC-LVは、ラベルなしデータが多いがラベル付きデータはほとんどないデータセットの学習フレームワークである。
我々は,NPC-LVが低データ構造における画像分類における3つのデータセットの教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-23T09:35:03Z) - A contextual analysis of multi-layer perceptron models in classifying
hand-written digits and letters: limited resources [0.0]
我々は,前処理や特徴抽出を行わずに,終端から終端までのバニラニューラルネットワーク(MLP)アプローチを純粋に検証した。
基礎的なデータマイニング操作は,計算時間の観点からモデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2021-07-05T04:30:37Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質を保証することは困難である。
本稿では,従来のラベルと予測を併用したTCR(Temporal Calibrated Regularization)を提案する。
論文 参考訳(メタデータ) (2020-07-01T04:48:49Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
検索強化生成モデルは、事前訓練されたパラメトリックメモリと非パラメトリックメモリを組み合わせて言語生成を行う。
我々は、RAGモデルが、最先端パラメトリックのみのセク2セックベースラインよりも、より具体的で、多様で、現実的な言語を生成することを示す。
論文 参考訳(メタデータ) (2020-05-22T21:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。