Path-Integral Formulation of Truncated Wigner Approximation for Bosonic Markovian Open Quantum Systems
- URL: http://arxiv.org/abs/2405.11173v2
- Date: Fri, 17 Jan 2025 05:04:44 GMT
- Title: Path-Integral Formulation of Truncated Wigner Approximation for Bosonic Markovian Open Quantum Systems
- Authors: Toma Yoneya, Kazuya Fujimoto, Yuki Kawaguchi,
- Abstract summary: We use the Wigner approximation to investigate bosonic quantum many-body dynamics.
We derive analytical expressions of the solvable differential equations from the Fokker-Planck equation.
We numerically confirm that the relaxation dynamics of physical quantities agrees well with the exact ones in the numerically models.
- Score: 0.0
- License:
- Abstract: The truncated Wigner approximation (TWA) enables us to investigate bosonic quantum many-body dynamics, including open quantum systems described by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. In the TWA, the Weyl-Wigner transformation, a way of mapping from quantum-mechanical operators to $c$-numbers, of the GKSL equation leads to the Fokker-Planck equation, which we calculate by reducing it to the corresponding stochastic differential equations. However, the Fokker-Planck equation is not always reduced to the stochastic differential equations depending on details of jump operators. In this work, we clarify the condition for obtaining the stochastic differential equations from the Fokker-Planck equation and derive analytical expressions of these equations for a system with an arbitrary Hamiltonian with jump operators that do not couple different states. This result enables us to shortcut the conventional complicated calculations in applying the TWA. In the course of the derivation, we formulate the GKSL equation by using the path-integral representation based on the Weyl-Wigner transformation, which gives us a clear interpretation of the relation between the TWA and quantum fluctuations and allows us to calculate the non-equal time correlation functions in the TWA. In the benchmark calculations, we numerically confirm that the relaxation dynamics of physical quantities including the non-equal time correlation functions obtained in our formulation agrees well with the exact ones in the numerically solvable models.
Related papers
- Analog quantum simulation of parabolic partial differential equations using Jaynes-Cummings-like models [27.193565893837356]
We present a simplified analog quantum simulation protocol for preparing quantum states that embed solutions of parabolic partial differential equations.
The key idea is to approximate the heat equations by a system of hyperbolic heat equations that involve only first-order differential operators.
For a d-dimensional problem, we show that it is much more appropriate to use a single d-level quantum system - a qudit - instead of its qubit counterpart, and d+1 qumodes.
arXiv Detail & Related papers (2024-07-02T03:23:11Z) - Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
The Fokker-Planck equation governs the density evolution of the Ito process.
Ground-truth velocity field can be shown to be the solution of a fixed-point equation.
In this paper, we exploit this concept to design a potential function of the hypothesis velocity fields.
arXiv Detail & Related papers (2022-06-02T03:44:23Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
arXiv Detail & Related papers (2022-03-07T11:21:48Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Optimal Control of Closed Quantum Systems via B-Splines with Carrier
Waves [0.0]
We consider the optimal control problem of determining electromagnetic pulses for implementing logical gates in a closed quantum system.
A novel parameterization of the control functions based on B-splines with carrier waves is introduced.
We present numerical examples of how the proposed technique can be combined with an interior point L-BFGS algorithm for realizing quantum gates.
arXiv Detail & Related papers (2021-06-27T18:41:39Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - Discrete Adjoints for Accurate Numerical Optimization with Application
to Quantum Control [0.0]
This paper considers the optimal control problem for realizing logical gates in a closed quantum system.
The system is discretized with the Stormer-Verlet scheme, which is a symplectic partitioned Runge-Kutta method.
A parameterization of the control functions based on B-splines with built-in carrier waves is also introduced.
arXiv Detail & Related papers (2020-01-04T00:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.