論文の概要: Excess Delay from GDP: Measurement and Causal Analysis
- arxiv url: http://arxiv.org/abs/2405.11211v1
- Date: Sat, 18 May 2024 07:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:57:45.847022
- Title: Excess Delay from GDP: Measurement and Causal Analysis
- Title(参考訳): GDPからの過剰遅延:測定と因果分析
- Authors: Ke Liu, Mark Hansen,
- Abstract要約: 地上遅延計画(GDP)は、到着空港における過度の需要・容量不均衡を解決するために広く用いられている。
本稿では,個別GDPによる過剰遅延を測定する手法を提案する。
2019年には33の空港から1210のGDPの過剰な遅延を測定した。
- 参考スコア(独自算出の注目度): 4.278526180010271
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Ground Delay Programs (GDPs) have been widely used to resolve excessive demand-capacity imbalances at arrival airports by shifting foreseen airborne delay to pre-departure ground delay. While offering clear safety and efficiency benefits, GDPs may also create additional delay because of imperfect execution and uncertainty in predicting arrival airport capacity. This paper presents a methodology for measuring excess delay resulting from individual GDPs and investigates factors that influence excess delay using regularized regression models. We measured excess delay for 1210 GDPs from 33 U.S. airports in 2019. On a per-restricted flight basis, the mean excess delay is 35.4 min with std of 20.6 min. In our regression analysis of the variation in excess delay, ridge regression is found to perform best. The factors affecting excess delay include time variations during gate out and taxi out for flights subject to the GDP, program rate setting and revisions, and GDP time duration.
- Abstract(参考訳): 地上遅延計画(GDP)は、空港の過度な需要・容量不均衡を解決するために、航空機の遅延を事前の地上遅延にシフトさせることで広く利用されている。
明確な安全性と効率性を提供する一方で、GDPは不完全な実行と到着空港の容量の予測の不確実性のために追加の遅延を引き起こす可能性がある。
本稿では,個別のGDPから生じる過剰遅延を測定する手法を提案し,正規化回帰モデルを用いて過剰遅延に影響を与える要因について検討する。
2019年には33の空港から1210のGDPの過剰な遅延を測定した。
制限飛行ベースでは、平均余剰遅延は35.4分で、ストッドは20.6分である。
過遅れの変動の回帰解析では,尾根回帰が最善であることがわかった。
過度の遅延に影響を及ぼす要因は、ゲートアウト中の時間変化や、GDPの対象となるフライトのタクシーアウト、プログラムのレート設定とリビジョン、GDPの時間の長さなどである。
関連論文リスト
- Deciphering Air Travel Disruptions: A Machine Learning Approach [0.0]
本研究は、出発時間、航空会社、空港などの要因を調べることにより、飛行遅延傾向を調査する。
遅延に対する様々なソースのコントリビューションを予測するために、回帰機械学習手法を採用している。
論文 参考訳(メタデータ) (2024-08-05T19:45:07Z) - Airport Delay Prediction with Temporal Fusion Transformers [24.280246809961945]
本研究は,米国最上位30空港において,新しい時空核融合変圧器モデルを適用し,第4四半期の空港到着遅延を予測することを提案する。
我々のモデルには、空港の需要と容量予測、歴史的な空港の運転効率情報、空港の風と可視性、さらには気象や交通条件などが含まれる。
論文 参考訳(メタデータ) (2024-05-14T03:27:15Z) - Streaming detection of significant delay changes in public transport systems [0.9217021281095907]
遅延などの公共交通機関の混乱は、モビリティの選択に悪影響を及ぼす可能性がある。
本稿では,遅延検出手法と参照アーキテクチャを提案する。
方法は、スケジュールからの逸脱として定義される遅延の計算を補完することができる。
論文 参考訳(メタデータ) (2024-04-11T15:54:20Z) - Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling [73.5602474095954]
マルコフサンプリングの遅延更新による近似スキームの非漸近的性能について検討した。
我々の理論的な発見は、幅広いアルゴリズムの遅延の有限時間効果に光を当てた。
論文 参考訳(メタデータ) (2024-02-19T03:08:02Z) - Posterior Sampling with Delayed Feedback for Reinforcement Learning with
Linear Function Approximation [62.969796245827006]
Delayed-PSVI は楽観的な値に基づくアルゴリズムであり、後続サンプリングによる雑音摂動により値関数空間を探索する。
我々のアルゴリズムは、未知の遅延が存在する場合に、$widetildeO(sqrtd3H3 T + d2H2 E[tau]$最悪の後悔を実現する。
遅延LPSVIのための勾配に基づく近似サンプリングスキームをLangevin動的に組み込んだ。
論文 参考訳(メタデータ) (2023-10-29T06:12:43Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
インターロックと呼ばれる予期せぬ粒子加速器の割り込みは、必要な安全対策にもかかわらず、突然の運用変更を引き起こす。
このような中断を予測することを目的とした,単純かつ強力なバイナリ分類モデルを提案する。
このモデルは、少なくとも絶対収縮と選択演算子によって罰せられるロジスティック回帰として定式化される。
論文 参考訳(メタデータ) (2023-03-15T23:11:30Z) - Spatiotemporal Propagation Learning for Network-Wide Flight Delay
Prediction [17.632313431251383]
本研究では時空間分離可能な畳み込みネットワークである時空間ネットワーク(STP)を提案する。
時間的依存性モデリングの関係から,複数種類の時間的依存性遅延時間について,エンドツーエンドで学習し,明確に推論できる多面的自己注意型手法を提案する。
論文 参考訳(メタデータ) (2022-07-14T14:30:59Z) - Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions [54.25616645675032]
アルゴリズムが受信したフィードバックにランダムな遅延を伴うマルチアーマッド・バンドイット(MAB)問題について検討する。
報酬非依存の遅延設定は、報酬非依存の遅延設定と、報酬非依存の遅延設定に依存する可能性がある。
私たちの主な貢献は、それぞれの設定でほぼ最適に後悔するアルゴリズムです。
論文 参考訳(メタデータ) (2021-06-04T12:26:06Z) - Stochastic bandits with arm-dependent delays [102.63128271054741]
我々は、単純なUCBベースのアルゴリズムであるPatentBanditsを提案する。
問題に依存しない境界も問題に依存しない境界も、性能の低い境界も提供します。
論文 参考訳(メタデータ) (2020-06-18T12:13:58Z) - Flight Time Prediction for Fuel Loading Decisions with a Deep Learning
Approach [3.285168337194676]
航空は常に新しい技術を模索し、燃料消費を減らすために飛行を最適化している。
過剰な燃料は、燃料消費の不確実性を扱うために、派遣者や(または)パイロットによってロードされる。
我々は,より優れた飛行時間予測を実現するために,空間重み付きリカレントニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-05-12T11:05:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。