論文の概要: Joint Analysis of Single-Cell Data across Cohorts with Missing Modalities
- arxiv url: http://arxiv.org/abs/2405.11280v1
- Date: Sat, 18 May 2024 12:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:28:33.500530
- Title: Joint Analysis of Single-Cell Data across Cohorts with Missing Modalities
- Title(参考訳): モダリティの欠如したコホートにおけるシングルセルデータの連成解析
- Authors: Marianne Arriola, Weishen Pan, Manqi Zhou, Qiannan Zhang, Chang Su, Fei Wang,
- Abstract要約: ドメインシフトの下で統一的なセル表現を学習する新しいフレームワークであるSingle-Cell Cross-Cohort Cross-Categoryを提案する。
我々の生成的アプローチは、これらの欠落したモダリティの計算を可能にする、リッチなクロスモーダルとクロスドメインの関係を学習する。
- 参考スコア(独自算出の注目度): 13.675134007270774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Joint analysis of multi-omic single-cell data across cohorts has significantly enhanced the comprehensive analysis of cellular processes. However, most of the existing approaches for this purpose require access to samples with complete modality availability, which is impractical in many real-world scenarios. In this paper, we propose (Single-Cell Cross-Cohort Cross-Category) integration, a novel framework that learns unified cell representations under domain shift without requiring full-modality reference samples. Our generative approach learns rich cross-modal and cross-domain relationships that enable imputation of these missing modalities. Through experiments on real-world multi-omic datasets, we demonstrate that offers a robust solution to single-cell tasks such as cell type clustering, cell type classification, and feature imputation.
- Abstract(参考訳): コホートをまたいだマルチオミック単一細胞データの結合解析は、細胞プロセスの包括的解析を大幅に強化した。
しかし、この目的のために既存のアプローチのほとんどは、実世界の多くのシナリオでは実現不可能な、完全なモダリティの可用性を持つサンプルへのアクセスを必要とする。
本稿では,完全モダリティ参照サンプルを必要とせず,ドメインシフトの下で統一的なセル表現を学習する新しいフレームワークであるSingle-Cell Cross-Cohort Cross-Categoryを提案する。
我々の生成的アプローチは、これらの欠落したモダリティの計算を可能にする、リッチなクロスモーダルとクロスドメインの関係を学習する。
実世界のマルチオミックデータセットの実験を通じて,セル型クラスタリング,セル型分類,特徴計算などの単一セルタスクに対して,堅牢なソリューションが提供されることを示した。
関連論文リスト
- CAVACHON: a hierarchical variational autoencoder to integrate multi-modal single-cell data [10.429856767305687]
マルチモーダルデータ間の条件付き独立関係を明示的に組み込んだ新しい確率論的学習フレームワークを提案する。
単セルマルチオミクスデータ統合に関連する様々なアプリケーションにおけるフレームワークの汎用性を実証する。
論文 参考訳(メタデータ) (2024-05-28T23:44:09Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
課題群規則化(Task Groupings Regularization)は、矛盾するタスクをグループ化し整合させることにより、モデルの不均一性から恩恵を受ける新しいアプローチである。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
シングルセルデータに適した,革新的なマルチビュークラスタリング手法である scUNC を導入する。
scUNCは、事前に定義された数のクラスタを必要とせずに、異なるビューからの情報をシームレスに統合する。
3つの異なる単一セルデータセットを用いて,SCUNCの総合評価を行った。
論文 参考訳(メタデータ) (2023-11-28T08:34:58Z) - Regression-Based Analysis of Multimodal Single-Cell Data Integration
Strategies [0.0]
マルチモーダルシングルセル技術は、個々のセルから多様なデータ型の同時収集を可能にする。
この研究は、Echo State Networksの異常なパフォーマンスを強調し、顕著な相関スコアが0.94である。
これらの発見は、機械学習の可能性を生かして、細胞の分化と機能に関する理解を深めることを約束している。
論文 参考訳(メタデータ) (2023-11-21T16:31:27Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - scICML: Information-theoretic Co-clustering-based Multi-view Learning
for the Integrative Analysis of Single-cell Multi-omics data [0.0]
マルチオミクス・シングルセルデータ統合のための情報理論を用いたマルチビュー学習法(scICML)を開発した。
scICMLは共同クラスタリングを使用して、データのビュー毎に同様の機能を集約し、セルの共通クラスタリングパターンを明らかにする。
実世界の4つのデータセットに対する実験により、SCICMLは全体のクラスタリング性能を改善し、末梢血単核球のデータ解析に関する生物学的知見を提供することが示された。
論文 参考訳(メタデータ) (2022-05-19T12:41:55Z) - Contrastive Cycle Adversarial Autoencoders for Single-cell Multi-omics
Alignment and Integration [0.0]
本稿では,単一セルRNA-seqデータと単一セルATAC-seqデータとの整合と統合のための新しいフレームワークを提案する。
他の最先端手法と比較して,本手法はシミュレーションデータと実シングルセルデータの両方において優れた性能を発揮する。
論文 参考訳(メタデータ) (2021-12-05T13:00:58Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。