論文の概要: CAVACHON: a hierarchical variational autoencoder to integrate multi-modal single-cell data
- arxiv url: http://arxiv.org/abs/2405.18655v1
- Date: Tue, 28 May 2024 23:44:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:23:36.497381
- Title: CAVACHON: a hierarchical variational autoencoder to integrate multi-modal single-cell data
- Title(参考訳): CAVACHON:マルチモーダル単一セルデータを統合する階層的変分オートエンコーダ
- Authors: Ping-Han Hsieh, Ru-Xiu Hsiao, Katalin Ferenc, Anthony Mathelier, Rebekka Burkholz, Chien-Yu Chen, Geir Kjetil Sandve, Tatiana Belova, Marieke Lydia Kuijjer,
- Abstract要約: マルチモーダルデータ間の条件付き独立関係を明示的に組み込んだ新しい確率論的学習フレームワークを提案する。
単セルマルチオミクスデータ統合に関連する様々なアプリケーションにおけるフレームワークの汎用性を実証する。
- 参考スコア(独自算出の注目度): 10.429856767305687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Paired single-cell sequencing technologies enable the simultaneous measurement of complementary modalities of molecular data at single-cell resolution. Along with the advances in these technologies, many methods based on variational autoencoders have been developed to integrate these data. However, these methods do not explicitly incorporate prior biological relationships between the data modalities, which could significantly enhance modeling and interpretation. We propose a novel probabilistic learning framework that explicitly incorporates conditional independence relationships between multi-modal data as a directed acyclic graph using a generalized hierarchical variational autoencoder. We demonstrate the versatility of our framework across various applications pertinent to single-cell multi-omics data integration. These include the isolation of common and distinct information from different modalities, modality-specific differential analysis, and integrated cell clustering. We anticipate that the proposed framework can facilitate the construction of highly flexible graphical models that can capture the complexities of biological hypotheses and unravel the connections between different biological data types, such as different modalities of paired single-cell multi-omics data. The implementation of the proposed framework can be found in the repository https://github.com/kuijjerlab/CAVACHON.
- Abstract(参考訳): ペアリング単一セルシークエンシング技術により、分子データの相補的モダリティを単一セル分解能で同時測定できる。
これらの技術の進歩とともに、これらのデータを統合するために変分オートエンコーダに基づく多くの手法が開発されている。
しかし、これらの手法は、モデリングと解釈を大幅に強化する可能性があるデータモダリティ間の先行する生物学的関係を明示的に含んでいるわけではない。
一般化階層型変分オートエンコーダを用いて,多モードデータ間の条件付き独立関係を有向非巡回グラフとして明示的に組み込んだ新しい確率論的学習フレームワークを提案する。
単セルマルチオミクスデータ統合に関連する様々なアプリケーションにおけるフレームワークの汎用性を実証する。
これらには、共通の情報と異なる情報を異なるモダリティから分離すること、モダリティ固有の差分解析、統合されたセルクラスタリングが含まれる。
提案手法は, 生物学的仮説の複雑さを捉え, ペア化された単一セルマルチオミクスデータの異なるモジュラリティなど, 異なる生物学的データ型間の接続を解き明かす, 高度に柔軟なグラフィカルモデルの構築を容易にすることを期待する。
提案されたフレームワークの実装は、リポジトリhttps://github.com/kuijjerlab/CAVACHONで見ることができる。
関連論文リスト
- Joint Analysis of Single-Cell Data across Cohorts with Missing Modalities [13.675134007270774]
ドメインシフトの下で統一的なセル表現を学習する新しいフレームワークであるSingle-Cell Cross-Cohort Cross-Categoryを提案する。
我々の生成的アプローチは、これらの欠落したモダリティの計算を可能にする、リッチなクロスモーダルとクロスドメインの関係を学習する。
論文 参考訳(メタデータ) (2024-05-18T12:32:21Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - Is your data alignable? Principled and interpretable alignability
testing and integration of single-cell data [24.457344926393397]
単細胞データ統合は、細胞の包括的な分子ビューを提供する。
既存の方法にはいくつかの基本的な制限がある。
スペクトル多様体アライメントと推論の枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-03T16:04:14Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space [45.418113011182186]
本研究では,変分オートエンコーダ(VAE)と因子解析潜時空間(FA-VAE)を組み合わせることで,制約に対処する新しい手法を提案する。
FA-VAE法は複数のVAEを用いて連続潜伏空間における各異種データビューのプライベート表現を学習する。
論文 参考訳(メタデータ) (2022-07-19T10:46:02Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
ヘテロジニアスビューの分子間相互作用をコードする多部グラフを効率的に推定する新しいディープベイズ生成モデルを提案する。
このようなディープベイズ生成モデルにおける最適輸送正則化により、ビュー固有側情報を組み込むだけでなく、分布ベース正則化によるモデルの柔軟性も向上する。
論文 参考訳(メタデータ) (2022-03-15T02:50:07Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。