論文の概要: A Dual Power Grid Cascading Failure Model for the Vulnerability Analysis
- arxiv url: http://arxiv.org/abs/2405.11311v1
- Date: Sat, 18 May 2024 15:04:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:18:48.639860
- Title: A Dual Power Grid Cascading Failure Model for the Vulnerability Analysis
- Title(参考訳): 脆弱性解析のためのデュアルグリッドカスケード故障モデル
- Authors: Tianxin Zhou, Xiang Li, Haibing Lu,
- Abstract要約: 電力グリッドカスケード故障(PGCF)の最重要ないし脆弱な送電線を見つけるという問題は、研究会から多くの注目を集めている。
電力グリッドの脆弱性を分析することを目的とした多くの決定論的解と近似アルゴリズムが存在する。
本稿では,トランスフォーマーモデルにインスパイアされた注意機構を用いて,そのような相関関係を学習する手法を提案する。
- 参考スコア(独自算出の注目度): 5.262076997375719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considering the attacks against the power grid, one of the most effective approaches could be the attack to the transmission lines that leads to large cascading failures. Hence, the problem of locating the most critical or vulnerable transmission lines for a Power Grid Cascading Failure (PGCF) has drawn much attention from the research society. There exists many deterministic solutions and stochastic approximation algorithms aiming to analyze the power grid vulnerability. However, it has been challenging to reveal the correlations between the transmission lines to identify the critical ones. In this paper, we propose a novel approach of learning such correlations via attention mechanism inspired by the Transformer based models that were initially designated to learn the correlation of words in sentences. Multiple modifications and adjustments are proposed to support the attention mechanism producing an informative correlation matrix, the Attention Matrix. With the Attention Ranking algorithm, we are able to identify the most critical lines. The proposed Dual PGCF model provide a novel and effective analysis to improve the power grid resilience against cascading failure, which is proved by extensive experiment results.
- Abstract(参考訳): 電力網に対する攻撃を考えると、最も効果的なアプローチの1つは、大きなカスケード障害を引き起こす送電線への攻撃である。
したがって、電力グリッドカスケード障害(PGCF)の最も重要または脆弱な伝送路を見つけるという問題は、研究会から多くの注目を集めている。
電力グリッドの脆弱性を分析することを目的とした多くの決定論的解と確率近似アルゴリズムが存在する。
しかし, 伝送線路間の相関関係を明らかにすることは困難であった。
本稿では,文中の単語の相関関係を学習するために最初に指定されたトランスフォーマーモデルにインスパイアされた注意機構を用いて,そのような相関関係を学習する手法を提案する。
情報相関行列であるアテンション行列を生成するアテンション機構を支援するために,複数の修正と調整が提案されている。
Attention Rankingアルゴリズムでは、最も重要な行を識別できる。
提案したDual PGCFモデルは、カスケード故障に対する電力グリッドのレジリエンスを改善するための、新しい効果的な解析を提供する。
関連論文リスト
- Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - HC-Ref: Hierarchical Constrained Refinement for Robust Adversarial
Training of GNNs [7.635985143883581]
コンピュータビジョンにおける敵の攻撃に対する最も効果的な防御機構の1つとされる敵の訓練は、GNNの堅牢性を高めるという大きな約束を持っている。
本稿では,GNNと下流分類器の対摂動性を高める階層的制約改善フレームワーク(HC-Ref)を提案する。
論文 参考訳(メタデータ) (2023-12-08T07:32:56Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
過去数十年間、深刻な経済とプライバシーの被害を受けたサイバー攻撃の数が増加している。
本稿では,侵入検知タスクのトポロジ情報の提供を目的とした,フローのグラフとしての新しいネットワーク表現を提案する。
提案するグラフ構造を利用したグラフニューラルネットワーク(GNN)に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-11T16:10:12Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
本稿では,異常検出のためのNetwork Transformer(NeT)モデルを提案する。
NeTは、解釈性を改善するために、通信ネットワークのグラフ構造を組み込んでいる。
提案手法は, 産業制御システムにおける異常検出の精度を評価することによって検証された。
論文 参考訳(メタデータ) (2022-02-25T22:05:59Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
ICSネットワークにおけるIDSによる不正な警告は、経済的および運用上の重大な損害をもたらす可能性がある。
本研究は,CPS電力系統における誤警報の事前分布を伴わずに不確実性に対処し,誤警報を低減する手法を提案する。
論文 参考訳(メタデータ) (2021-11-20T00:05:39Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。